Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Книга по химии для домашнего чтения - Степин Борис Дмитриевич - Страница 49


49
Изменить размер шрифта:

4.2. ЭЛЕМЕНТЫ ПО АРИСТОТЕЛЮ

Аристотель (384–322 гг. до н.э.) был почти 20 лет учеником знаменитого философа и математика Платона (см. 1.6) и только в возрасте 37 лет покинул стены платоновской школы, чтобы стать учителем Александра Македонского. В 335 г. до н.э. он основал в Афинах свою философскую школу — Ликей. В то время философы не имели никакого понятия о химических элементах, хотя им были известны семь металлов (см. 3.1) и два неметалла — уголь и сера.

Рис. 1. Элементы или стихии Аристотеля 

Аристотель создал первую картину мира. Он был уверен, что первоосновой всего существующего является какая-то единая первоматерия, находящаяся в разных состояниях, появляющихся при комбинациях четырех стихий или элементов: земли, воды, воздуха и огня (рис. 1). Стихия земли может находиться в сухом и холодном состояниях, стихия воды — в холодном и влажном состояниях, и т. д. К четырем элементам Аристотель позднее присоединил пятый — эфир, из которого, как он полагал, состоят небеса, звезды и планеты. По его мнению, все шесть металлов образовались из ртути путем присоединения к ней того или иного элемента — земли, воды, воздуха или огня.

4.3. ПЕРВЫЙ МЕТАЛЛ ЧЕЛОВЕКА

Знаете ли вы:

C каким первым металлом познакомился человек еще в эпоху каменного века? Что из ртути можно получить золото?

Считают, что золото и железо были первыми металлами, знакомыми человеку еще в каменном веке. Золото встречается в природе в самородном состоянии, а железо было металлом, «упавшим с неба», метеоритным железом. В Древнем Египте железо называли «бе-нипет», что означало в буквальном переводе «небесный металл» (см. 1.55 и 5.27). За три тысячелетия до нашей эры человечеству уже были известны семь металлов, получивших название «семь металлов древности»: золото Au, железо Fe, серебро Ag, медь Cu, свинец Pb, олово Sn и ртуть Hg.

В IV в. до н.э. в Индии и Египте ртуть Hg и сера S были, по древним представлениям, как бы «родительской парой», порождавшей все металлы и минералы. Ртуть рассматривалась как символ металличности, как «душа металла» и «корень всех веществ». Поэтому ртуть называли в то время Меркурием по имени ближайшей к Солнцу — золоту — планеты Меркурий (см. 3.1). Отсюда и произошло название сложных соединений ртути — меркураты (например, тетраиодомеркурат калия K2(HgI4]).

Уже в нашем столетии выяснилось, что природная ртуть и ртуть, получаемая из минерала киновари, сульфида ртути HgS (см. 1.13), всегда содержит примесь золота в большем или меньшем количестве. Ртуть образует с золотом ряд соединений: Au3Hg, Au2Hg, AuHg2 и др. Некоторые из этих соединений способны переходить вместе с ртутью в пар и затем в ее конденсат. Поэтому от примеси золота ртуть не освобождается даже после многократной повторной перегонки. Только при длительном электрическом разряде в парах ртути можно выделить на стенках реакционной трубки черный налет мелкораздробленного золота. Это явление послужило причиной возрождения 60–70 лет тому назад старой алхимической версии о возможности превращения ртути в золото. Увы, золото было только примесью в ртути. Золото Au в исчезающе малых количествах можно получить из ртути Hg только в ядерных реакциях. Например, из радиоактивного изотопа ртути-197 в ядерной реакции

19780Hg(K, e-, γ) → 19779Au,

в которой в результате захвата ядром электрона (K-захват) один из протонов ядра превращается в нейтрон n0 с излучением фотона γ:

p+ + е- = n0 + γ.

4.4. ПОРЯДКОВЫЙ ИЛИ АТОМНЫЙ НОМЕР?

Порядковый номер и атомный номер химического элемента — синонимы, совпадающие понятия. В Периодической системе Менделеева (см. 2.13) элементы располагаются в порядке возрастания их номеров, начиная с водорода H, порядковый или атомный номер которого равен единице. Порядковый номер элемента равен заряду ядер его атомов в единицах элементарного электрического заряда или числу протонов в ядре, а для нейтрального атома — числу электронов в нем.

Термин «порядковый номер элемента» впервые ввел в употребление английский химик Ньюлендс в 1875 г. без какого-либо физического смысла (см. 2.16). Этот термин вначале не имел никакого отношения к Периодической системе Менделеева. Термин «атомный номер элемента» ввел в употребление английский физик Эрнст Резерфорд в 1913 г. вместо термина «порядковый номер элемента» и настойчиво его внедрял. Так как Периодическая система Менделеева — это система химических элементов, а не атомов, их составляющих, то в настоящее время предпочтение отдается термину «порядковый номер элемента».

Если символ элемента Э, то порядковый номер элемента Z обозначается подстрочным индексом слева от символа, а массовое число А, или число нуклонов в ядрах элемента (см. 4.60) — надстрочным индексом слева, например AZЭ. Для изотопа золота-157 обозначение будет таким: 19779Au, где 197 — массовое число А, 79 — порядковый номер Z.

Примечание. Эрнст Резерфорд (1871–1937) — английский физик, член Лондонского королевского общества, его президент, лауреат Нобелевской премии.

4.5. «ВЫМИРАЮТ» ЛИ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ?

Все вещества Земли образовались преимущественно из устойчивых атомов химических элементов. Но кроме них в земной коре, гидросфере и атмосфере присутствуют исчезающе малые количества радиоактивных элементов, таких как франций Fr, актиний Ac, технеций Tc (см. 4.42), радон Rn (см. 4.31), астат At (см. 4.40), полоний Po и некоторых других, которые относят к «вымершим» элементам. На ранних этапах формирования Земли их было много, но вследствие радиоактивного распада они постепенно превратились в устойчивые атомы ныне существующих элементов. В частности, технеций, элемент VIIB группы Периодической системы, существовавший около 4 млрд., лет тому назад, исчез в результате радиоактивного распада: Тс-99 (e-) Ru-99. Обнаруживаемые в некоторых минералах следы технеция порядка 10-9 г/кг — результат радиоактивного распада урана U и воздействия космических нейтронов n0 на минералы, содержащие молибден Mo, ниобий Nb и рений Re (см. 4.43).

Свои последние дни доживают в современную эпоху атомы калия-40, урана-235, актиния-235, астата-211 и некоторых других радиоактивных элементов.

В частности, было подсчитано, что в каждом килограмме урана через 100 млн. лет образуется 13 г свинца Pb и 2 г гелия He. А через 4 млрд., лет урана на Земле не останется. В бывших месторождениях его минералов найдут только соединения свинца, а атмосфера станет богаче гелием.

4.6. ЧТО В АТМОСФЕРЕ ВЕНЕРЫ, ЗЕМЛИ И МАРСА?

Атмосфера Венеры и Марса содержит преимущественно углерод в виде его диоксида CO2, а атмосфера Земли — азот N2. В атмосфере Венеры кроме диоксида углерода находятся в небольших количествах еще азот и аргон Ar. В атмосфере Марса после диоксида углерода наиболее распространенными являются диоксид серы SO2 и азот. В атмосфере Земли кроме азота содержатся кислород O2 и в очень небольших количествах аргон и диоксид углерода. Считают, что атмосфера Земли в начале ее эволюции состояла из диоксида углерода, а затем стала азотно-кислородной. Практически весь аргон атмосферы Земли образовался в результате радиоактивного распада ядер химического элемента калия-40.