Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Книга по химии для домашнего чтения - Степин Борис Дмитриевич - Страница 13


13
Изменить размер шрифта:

Fe + 2HCl = FeCl2 + H2↑.

Ломоносов считал, что водород выделяется из металлов. Только в 1766 г. английский химик Кавендиш (см. 2.8), ничего не зная о работах Ломоносова, получил водород в реакции

Fe + H2SO4 = FeSO4 + H2↑

и назвал его «горючим воздухом». В отличие от Ломоносова Кавендиш считал, что «горючий воздух» — это соединение флогистона с водой (см. 1.40; 1.42).

1.40. СПОРЫ О ФЛОГИСТОНЕ

«Химики сделали из флогистона смутное начало, которое не определено в точной мере и которое поэтому пригодно для любых объяснений, в которые его хотят ввести».

(А. Лавуазье, 1783 г.)

Целая плеяда замечательных химиков — Ломоносов (см. 2.1), Шееле (см. 2.7), Кавендиш (см. 2.3), Пристли (см. 2.11) — искала способы выделения флогистона из различных веществ, но так и не смогла их найти. Что же это за «составная часть веществ — флогистон»? Термин «флогистон» (от греческого — воспламеняющийся, горючий) употреблялся врачами со времен Аристотеля (см. 4.2) для указания на особо воспаленное состояние органов дыхания. Понятие о флогистоне для объяснения химических реакций ввел в обиход Георг-Эрнст Шталь (1659–1734), придворный врач герцога Саксен-Веймарского, а затем — прусского короля Фридриха-Вильгельма I. Шталь был членом Прусской академии наук и президентом Медицинской коллегии Пруссии. Он считал, что флогистон — составная часть всех горючих тел. По его мнению, флогистон выделяется при горении или обжигании веществ и, соединяясь с воздухом, образует пламя или огонь. Из воздуха флогистон выделить химическим путем уже нельзя. Только растения могут извлекать его, а через употребление растений флогистон переходит в животные организмы. Чем больше флогистона содержит вещество, тем более оно способно к горению. По Шталю, уголь состоит из почти чистого флогистона, но флогистон не является углеродом. Металлы, по представлению Шталя, являются сложными веществами, состоящими из «известей» и флогистона. Металлы, теряя флогистон, превращаются в «извести», из которых, добавляя флогистон, можно снова получить металлы. Со временем флогистон начали считать особой невесомой жидкостью, способной переливаться из одного тела в другое.

Ломоносов допускал, что флогистон — реальное материальное тело, состоящее из корпускул.

Первый удар по теории флогистона нанес Лавуазье (см. 2.28) в 1775 г. после открытия кислорода. Он показал, что никакого флогистона в природе не существует. Металлы под воздействием кислорода превращаются в оксиды (по Шталю — «извести»), а уголь, сгорая, переходит в диоксид углерода CO2.

1.41. «СВЕТИЛЬНЫЙ ГАЗ»

C развитием металлургии в России увеличивалось и производство кокса из каменного угля путем нагревания последнего без доступа воздуха. Побочные продукты коксования угля в основном содержали водород H2, метан CH4, аммиак NH3 и каменноугольную смолу. После отделения смолы газ пропускали через воду, которая растворяла аммиак, а оставшиеся газообразные продукты — водород и метан — составляли основу так называемого «светильного газа», который употребляли для освещения городских улиц и для других бытовых нужд. Пропуская газообразные продукты коксования каменных углей через водные растворы серной кислоты H2SO4 или хлороводорода НСl, получали сульфат аммония (NH4)2SO4 или хлорид аммония NH4Cl (нашатырь, см. 1.44).

Выделение газа при нагревании угля без доступа воздуха впервые наблюдал в 1681 г. немецкий алхимик и врач Иоганн-Иоахим Бехер (1635–1682). Только через 100 с лишним лет «светильный газ» нашел практическое применение. В 1792 г. английский инженер Уильям Мурдок построил промышленную установку по сухой перегонке угля для газового освещения своего дома и фабрики. В 1814 г. уже целый квартал Лондона имел газовые фонари (см. 9.21).

1.42. ВОЗДУШНЫЕ ШАРЫ

В июне 1794 г. для наблюдения за передвижением армии интервентов во время боя при Флёрюсе (Франция) был использован привязной воздушный шар, заполненный водородом.

Способ получения водорода действием разбавленной серной кислоты H2SO4 на железо Fe (см. 1.39) был очень дорогим. Лавуазье (см. 2.28) и французский военный инженер Жан Мёнье (1754–1793) предложили первый промышленный метод получения водорода, заключающийся в пропускании водяного пара через раскаленный орудийный ствол:

3Fe + 4Н2O = 4Н2↑ + (FeFe2)O4[10].

Производительность такого примитивного процесса была крайне мала. Поэтому для заполнения водородом воздушного шара Жан Кутель (1748–1835) — французский инженер и командир воздухоплавательной роты — и Николя Конте (1755–1805) — французский химик — создали более крупную установку, состоящую из семи чугунных труб, вмазанных в печь и заполненных железными опилками. При прохождении водяного пара через раскаленные докрасна железные опилки образовывался водород, который очищался пропусканием через воду и водную суспензию гидроксида кальция Ca(OH)2.

Производительность такой установки, использовавшей 200 кг железных опилок, составляла 24 м3 водорода в час. В России аналогичную установку впервые создал в 1803 г. русский химик, академик Яков Дмитриевич Захаров (1765–1836), незнакомый с работами французских химиков. Его установка вмещала 819 кг железных стружек и производила 91 м3 водорода в час. Свою установку Захаров использовал для наполнения водородом воздушного шара (см. 2.14).

В настоящее время промышленные способы получения водорода основаны либо на извлечении его из природных газов, либо на электролизе воды.

1.43. ВОЗМУЩЕНИЕ ПРИСТЛИ. ПОЧЕМУ ОБИДЕЛСЯ УАТТ?

В 1774 г. Лавуазье (см. 2.28) провел опыты с нагреванием оксида ртути HgO:

2HgO = 2Hg + O2↑

и убедился, что выделяющийся газ не имеет ничего общего с диоксидом углерода CO2, который тогда называли «связанным воздухом». Новый газ O2 Лавуазье назвал «чрезвычайно чистым воздухом», а позднее — кислородом. О своем открытии он никаких сообщений не сделал, и записи о проведенных опытах остались лишь в его дневнике. В том же году английский химик Пристли (см. 2.11) также при нагревании HgO обнаружил выделение газа, улучшающего горение свечи. Он назвал этот газ «дефлогистированным воздухом». В конце 1774 г. Пристли прибыл в Париж, встретился с Лавуазье и рассказал ему о своих удивительных опытах. После визита Пристли Лавуазье, просмотрев свои дневниковые записи, сделал сообщение в Парижской академии наук об открытии им нового газа без ссылки на разговор с Пристли. А Пристли, узнав об этом, стал утверждать, что Лавуазье использовал его сообщение для присвоения приоритета открытия нового «воздуха». В ответ на возмущение Пристли Лавуазье в 1782 г. писал: «Этот воздух, который г. Пристли открыл приблизительно в то же время, что и я, и даже, я думаю, раньше меня…». В этом споре важно отметить и другое: Пристли считал воздух однородным веществом, а Лавуазье уже в то время был твердо уверен, что воздух содержит в себе два различных газа. Ко времени визита Пристли Лавуазье получил письмо от шведского химика Шееле (см. 2.7) с сообщением об открытии им «райского воздуха» (так назвал Шееле кислород).

Позднее Лавуазье показал, что кислород входит в состав продуктов горения фосфора (P4O10), серы (SO2) и что азотная кислота HNO3 также содержит кислород. Это привело его к мысли, что все кислоты являются продуктами реакции присоединения нового газа к какому-либо веществу. Поэтому он и дал название этому газу «кислород» — «рождающий кислоты».