Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
От чёрных облаков к чёрным дырам - Нарликар Джаиант - Страница 13
в молекулеНеорганические молекулыОрганические молекулы 2 Н2(водород) СН (метилидин) ОН (гидроксил) CN (циан) SiO (оксид кремния) СО (оксид углерода) NS (сернистый азот) GS (сернистый углерод) 3 H2O (вода) HCN (цианид) H2S (сероводород) НСО (формил) SO2 (диоксид серы) HNO (нитроксил) 4 NH3 (аммиак) Н2СО (формальдегид) HNCO (изоциановая кислота) 5 — H2CHN (метанимин) НСООН (муравьиная кислота) 6 — СН3ОН (метанол) HCONH2 (формамид) 7 — CH3HN (метиламин) 8 — НСООСН3 (метил) 9 — (СН3)2О (диметиловый эфир)
541. Список далеко не полон и даёт лишь общее представление.
Конечно, молекулы разных типов распределены по-разному. Например, в ГМО наибольшее по масштабам распределение даёт молекула СО (оксид углерода). Изображение ГМО, включающее туманность Ориона (рис. 27.) и построенное по наличию СО, простирается далеко за пределы оптического изображения. Молекулы СО обнаружены в других частях Галактики, а также в других галактиках.
Рис. 29. В ГМО имеются неоднородности, контуры которых показаны на рисунке, Самые внутренние области (они зачернены) имеют наибольшую плотность. Именно здесь образуются протозвёзды
ГМО совершенно неоднородно по составу. Как показано на рис. 29, в нём есть неоднородности разных масштабов. Так, сплошь и рядом обнаруживается очень плотная область вещества, окружённая менее плотной оболочкой, которая в свою очередь «окружена ещё менее плотной оболочкой, и т. д. Маленькие плотные области, показанные на рис. 29, называются молекулярными облаками (без прилагательного «гигантские») и имеют диаметр порядка одного светового года. Именно эти компактные плотные области дают ключ к пониманию звездообразования. ОБРАЗОВАНИЕ ПРОТОЗВЁЗД
Что такое звезда? Прежде всего, это шар, состоящий из горячего плотного газа. Следовательно, чтобы образовать звезду, нужно сжать некоторую область молекулярного облака очень сильно, пока она не станет достаточно плотной и горячей для того, чтобы превратиться в звезду. Такое сжатие достигается силой тяготения. В процессе -рассказа о судьбе звёзд мы неоднократно будем убеждаться, что тяготение играет решающую роль в жизни звезды.
Рассматривая пока что ГМО, можно сказать, что любая начальная неоднородность в нём имеет тенденцию увеличиваться в результате тяготения, так как более плотные области сильнее притягивают окружающее вещество и поэтому имеют тенденцию собирать все больше вещества и становиться ещё более плотными. Именно так развиваются неоднородности, показанные на рис. 29.
Роль тяготения в сжатии областей внутри ГМО можно сравнить с открытием какого-нибудь дорогостоящего полезного ископаемого, например нефти, в слаборазвитой стране. Это. открытие влечёт за собой приток людей из окрестных мест и возрастание экономической активности в регионе. Как следствие, возникает неравенство между этим регионом и окружающими областями, которое непрерывно нарастает. Однако такой процесс не может длиться бесконечно долго, так как начинают себя проявлять восстанавливающие равновесие социально-экономические силы и в конечном итоге регион экономически стабилизируется. Точно так же в сжимающемся облаке возникают противоположные силы, так что в результате достигается стабильное состояние. Это происходит следующим образом.
Когда газ сжимается, он нагревается и, когда становится достаточно горячим, начинает излучать теплоту и свет. Это излучение, а также увеличение хаотического движения молекул и атомов газа (рис. 30) порождают давление, препятствующее вызываемому тяготением сжатию молекулярного облака. Температура и давление в центре облака максимальны, а на периферии — минимальны.
Рис. 30. Стрелки указывают направления движения частиц газа. Значение скорости частиц и её направление совершенно хаотичны. Интенсивность этого хаотичного движения связана с общей температурой газа
Один из основных законов теплоты заключается в том, что теплота переносится всегда из области большой температуры в область более низкой температуры, если, конечно, имеются доступные пути оттока теплоты. В протозвезде, т.е. в описанном выше молекулярном облаке, возможны два пути переноса теплоты от горячей центральной зоны к более холодным периферическим областям. Один путь, называемый конвекцией, заключается в том, что горячие частицы газа из центра сами перемещаются в более холодные области. Это во многом напоминает то, как поднимается вверх со дна более тёплая вода в нагреваемом сосуде. В другом способе переноса теплоты носителями являются фотоны, частицы света (см. гл. 2). Фотоны также совершают путь наружу, унося теплоту, и этот процесс, естественно, называется излучением.
Эти два процесса не всегда равно эффективны. Например, конвекция может прекратиться, если частицам газа станет все труднее выбираться из центра наружу, что произойдёт, если плотность в центре звезды станет слишком большой. Аналогично, излучение становится неэффективным, если фотоны слишком часто рассеиваются веществом протозвезды и, таким образом, не имеют возможности вылететь наружу по прямому короткому пути. Мы продолжим это сравнение двух типов переноса теплоты, когда обсудим внутреннюю структуру уже сформировавшейся звезды.
Возвращаясь к протозвезде, можно сказать, что на ранних стадиях конвективный способ переноса срабатывает хорошо и эффективно (если только протозвезда не слишком массивна, скажем, не более чем в 3 раза массивнее Солнца). В результате теплота быстро выносится наружу и излучается в окружающее пространство с поверхности облака. Поэтому облако вначале имеет очень большую светимость.
Однако эта светящаяся фаза длится не очень долго. Действительно, у протозвезды на этой стадии имеется лишь один источник снабжения энергией, необходимой для излучения, а именно, запас гравитационной энергии. Чтобы высвободить эту энергию, звезда должна быстро сжиматься. В следующей главе мы более подробно обсудим, каким образом гравитационное сжатие приводит к освобождению энергии. Пока что примем, что эта идея правильна и посмотрим, к каким следствиям приводит она для молекулярного облака. На ранних стадиях протозвезда быстро сжимается, чтобы иметь возможность поддерживать большой поток энергии от центра к периферии и затем в окружающее пространство. Но в процессе сжатия она становится плотнее, конвекция становится все менее эффективным средством переноса энергии, и в результате светимость протозвезды все более ослабевает. Это влечёт и замедление сжатия по сравнению с ранней фазой. Таким образом, сжатие и конвективный перенос теплоты продолжаются до определённого момента, когда конвекция перестаёт быть существенной.
Эта фаза в жизни протозвезды называется фазой Хаяши, поскольку она впервые детально обсуждалась в 1966 г. японским астрономом Чуширо Хаяши. Эта фаза имеет важное отношение к внешнему виду протозвезды, который мы пока что не обсуждали. Примечательно, что в процессе сжатия поверхность протозвезды сохраняет постоянную температуру - около 4000 К.
Причина этого в следующем. При такой температуре внутренние движения в газе столь быстры, что атомные электроны срываются с орбит вокруг соответствующих атомных ядер. Электростатическое притяжение ядер уже не способно удержать электроны, и это происходит как раз, когда температура превышает 4000 К. Свободные электроны необычайно эффективно рассеивают любое выходящее из протозвезды излучение. При температуре ниже 4000 К электроны связаны в атомах и не могут помешать излучению, устремляющемуся наружу сквозь рой встречающихся по дороге атомов. На рис. 31 показано, каким образом указанная температура эффективно фиксирует поверхность протозвезды; под этой поверхностью температура выше 4000 К и излучение находится в ловушке, вне поверхности температура ниже 4000 К и излучение стремится выйти наружу.
- Предыдущая
- 13/33
- Следующая