Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Анаболизм без лекарств III - Буланов Юрий Б. - Страница 38


38
Изменить размер шрифта:

Чтобы влиять на рост мышц, нужно иметь представление о процессах их наращивания и утраты на молекулярном уровне. В отличие от типичной животной клетки, в цитоплазме которой находится только одно ядро, мышечная клетка представляет собой длинный цилиндр, содержащий несколько ядер, а кроме того, в ее цитоплазме присутствуют многочисленные волокна — миофибриллы. Они, в свою очередь, состоят из толстых и тонких нитей, которые, перекрываясь, образуют основной сократительный элемент мышечной клетки — саркомер. Укорочение саркомеров приводит к сокращению мышц, возникающее при этом напряжение может стать причиной повреждения волокон, если белок дистрофии (который не вырабатывается в организме больных мышечной дистрофии Дюшенна) не отводит избыток энергии через клеточную мембрану наружу.

Но деформация появляется в мышцах и в присутствии дистрофина. Принято считать, что единственный способ нарастить мышцы и укрепить их — это физические упражнения. При больших нагрузках в волокнах возникают микроскопические разрывы, провоцирующие образование специфических химических веществ — сигналов тревоги. Они запускают в организме процесс регенерации тканей, который в данном случае заключается не в образовании новых мышечных волокон, а в ремонте клеточной мембраны поврежденных волокон и наполнении клетки новыми миофибриллами. Для этого должна произойти активация соответствующих генов в ядрах мышечной клетки, а когда потребность в новых миофибриллах очень велика, имеющихся ядер может оказаться недостаточно, и клетке требуется помощь.

На ее призыв откликаются клетки-сателлиты. Вначале происходит быстрое деление специфических стволовых клеток, находящихся в мышцах, затем их потомки сливаются с волокном и передают мышечным клеткам свои ядра. В результате мышечных волокон больше не становится, но в их ядрах количество хромосом увеличивается. Увеличив свой генетический потенциал, мышечное волокно начинает расти в толщину. В регуляции процесса участвуют факторы, способствующие росту мышц и противодействующие ему. Стимулятором роста служит инсулиноподобный фактор роста I (invisible growth factor I (IGF-I), а ингибитором — белок миостагин.

Вместе с коллегами из Пенсильванского университета и Надей Розенталь (Nadia Rosental) из Гарвардского университета семь лет назад мы решили выяснить, можно ли использовать IGF-I для изменения функционирования мышц. Нам было известно, что если просто инъецировать в мышцы IGF-I, то через несколько часов он исчезает. Но если ввести в клетку ген, кодирующий этот фактор, то он будет работать до тех пор, пока функционирует клетка, и обеспечивать ее необходимыми миофибриллами. Возможно, введения одной дозы IGF-I-гена хватило бы пожилому человеку на всю оставшуюся жизнь. Основная проблема заключается в адресной доставке IGF-1-гена.

Доставка генов

Как и большинство других исследователей, мы использовали в качестве переносчиков (векторов) генов вирусные частицы. Они проникают в клетки организма-хозяина и включают свой генетический материал в клеточный геном, но до поры до времени никак себя не проявляют, выступая в роли биологического Троянского коня. В какой-то момент вирусные гены активируются, и начинают реплицироваться, используя клеточный аппарат для производства своих белков. Специалисты по генной терапии эксплуатируют эту способность вирусов, для чего включают в их геном нужный ген и удаляют те, которые отвечают за патогенность вируса.

В качестве вектора был взят крошечный аденоассоциированный вирус (AAV), который легко проникает в мышечные клетки человека и не вызывает при этом никаких заболеваний. В его геном мы включили синтетический IGF-I-ген, функционирующий только в скелетных мышцах. Введение рекомбинантного вируса молодым мышам привело к увеличению у них суммарной длины мышц и повышению скорости наращивания мышечной массы на 15–30 %, при том что грызуны вели малоподвижный образ жизни. Затем мы ввели IGF-I-ген взрослым мышам и длительное время наблюдали за ними. Обнаружилось, что у них с возрастом мышцы не утрачивали своей силы.

Для проверки безопасности такого подхода Розенталь создала трансгенных мышей, у которых IGF-I образовывался в избыточном количестве во всех скелетных мышцах. Животные развивались нормально, только масса скелетных мышц была у них выше нормы на 20–50 % Когда мыши состарились, обнаружилось, что их мышцы такие же сильные, как у молодых грызунов. Не менее важным было и то, что повышенный уровень IGF-1 отмечался только в мышцах, а в крови оставался нормальным (увеличение концентрации циркулирующего в организме IGF-I отрицательно сказывается на работе сердца и увеличивает вероятность онкологических заболеваний). Последующие эксперименты показали, что при образовании IGF-I в избыточном количестве повреждения в мышцах устраняются быстрее даже у мышей с серьезными формами мышечной дистрофии.

Возможность локального образования IGF-I позволяет достичь заветной цели при лечении болезней, связанных с мышечным истощением, — разрыва тесной связи между мышечной нагрузкой и их размерами. Подобная имитация физических упражнений таит в себе много привлекательного для профессиональных спортсменов. Если генноинженерным способом удалось достичь увеличения мышечной массы у молодых животных, ведущих малоподвижный образ жизни, то почему бы не использовать этот метод для развития мускулатуры у активных, здоровых индивидов?

Сотрудники моей лаборатории инъецировали рекомбинантный аденовирус, несущий ген белка IGF-I, в мышцы одной задней конечности каждой из лабораторных крыс и затем в течение восьми дней подвергали их нагрузкам. К концу эксперимента мышцы лапы, куда была сделана инъекция, стали вдвое сильнее и впоследствии утрачивали силу гораздо медленнее, чем мышцы второй задней конечности. Даже у крыс, не получавших нагрузок, после инъекции наблюдалось 15 %-ное увеличение силы мышц — в полном соответствии с теми данными, что были получены нами в опытах на мышах. Сейчас мы собираемся провести аналогичные исследования на собаках — известно, что одна из пород, охотничья поисковая, подвержена особенно тяжелой форме мышечной дистрофии.

Что касается человека, то о применении генной терапии с использованием рекомбинантных аденоассоциированных вирусов можно будет говорить не ранее, чем через 10 лет. Во-первых, нужно понять, безопасен ли этот метод, а во-вторых, неясно, куда лучше вводить вирус — в кровь или непосредственно в мышечную ткань. Пока же планируются испытания на человеке методов переноса генов для замены дефектного гена дистрофина, а Ассоциация по исследованию мышечной дистрофии скоро приступит к клиническим испытаниям способа лечения миотонической дистрофии (патологии, проявляющейся длительным мышечным сокращением), основанного на инъекциях IGF-I.

Возможно, удастся достичь успехов, используя препараты, блокирующие действие миостатина — белка, участвующего в регуляции роста и развития мышц, на протяжении всей жизни животных начиная с эмбриональной стадии. В норме он действует как тормоз, не допуская чрезмерного развития мышечной ткани, а когда нагрузка уменьшается, запускает процесс атрофии. Как показывают опыты на трансгенных мышах, в отсутствие этого фактора сдерживания роста наблюдается заметное увеличение, как числа мышечных волокон, так и всей мышечной массы.

Не только увеличение мышечной массы

Фармацевтические и биотехнологические компании работают сегодня над созданием сразу нескольких ингибиторов миостатина, который может способствовать повышению мясистости скота.

Первые миостатин-блокирующие препараты представляли собой антитела к миостатину. Вскоре начнутся клинические испытания одного из них на больных мышечной дистрофией Дюшенна. Другой подход состоит в имитации специфической мутации в геноме животного путем введения в его организм укороченного миостатина, который не обладает свойственными нормальной молекуле сигнальными функциями, но распознает структуры, примыкающие к клеткам-сателлитам, связывается с ними и делает недоступными для нормального миостатина. Показано, что инъекция укороченной версии данного белка (пептида) в мышцы приводит к их гипертрофии. Такой подход представляется изданный момент самым перспективным. Теперь мы собираемся ввести синтетический ген, кодирующий этот пептид, собакам.