Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

До предела чисел. Эйлер. Математический анализ - Коллектив авторов - Страница 5


5
Изменить размер шрифта:

Σ (сигма): Эйлер выбрал эту букву для обозначения суммы последовательности чисел, подчиняющейся какому-либо правилу, которое записывается над или под символом. В общем случае сумма элементов х, где i — "счетчик" слагаемых, идущих от m до n, записывается так:

Σi=mnxi = xm + xm+1 + xm+2 + ... + xn-1 + xn.

Сигма — греческий аналог буквы "с", с которой начинается слово "сумма", поэтому ее использование кажется вполне логичным. В течение жизни Эйлер вычислил сотни таких последовательностей, многие из которых были бесконечными. При n = ∞ последовательность называется рядом. Возможно, самая знаменитая в своей простоте последовательность Эйлера — это последовательность из Базельской задачи, которую он вычислил в 1735 году, на пике своего математического творчества (мы поговорим о ней подробней в следующей главе):

Σn=1∞1/n2  = π2/6.

Никто не ожидал, что в сумме этой последовательности будет задействовано число π, и его появление внесло настоящую неразбериху в умы ученых.

— Заглавные и строчные буквы: в любом треугольнике стороны обозначаются строчными буквами, а соответствующие углы — теми же буквами, но заглавными (рисунок 1).

РИС. 1

РИС . 2

РИС 3

Аналогичным образом буквами R и г обозначаются соответственно радиусы описанной (рисунок 2) и вписанной окружностей (рисунок 3).

— Использование первых букв алфавита (обычно строчных) — а, b, с, d — для обозначения известных величин в уравнениях, и последних — х, у, z, v — для неизвестных величин.

— Сокращенные латинские формы sin, cos, tang, cot, sec и cosec Эйлер впервые использовал в 1748 году в своей книге "Введение в анализ бесконечно малых" для обозначения тригонометрических функций. Затем они были адаптированы к разным языкам, хотя сейчас фактически универсальным является их английский вариант: sin х, cos х, tan х (в русской традиции tg x), cot х (или ctg х), sec х и cosec х.

— Обозначение для конечных разностей: это вычислительный инструмент, немного похожий на производные. Он не использует понятие предела и так называемые бесконечно малые. Конечные разности встречаются уже у Ньютона (1642-1727), Джеймса Грегори (1638-1675) и Колина Маклорена (1698-1746) и позволяют вычислять неизвестные многочлены на основе их значений, а также интерполировать и изучать последовательности и ряды. Изобретение компьютеров сделало их еще полезнее. Эйлер посвятил много сил изучению конечных разностей. Их обозначения, которые сегодня встречаются в книгах, принадлежат ему. В самом простом случае для последовательности {ui} разность двух соседних членов будет обозначаться ∆:

∆uk = uk+1 - uk.

Последующие конечные разности (второго порядка ∆2, третьего порядка ∆3, четвертого порядка ∆4 и так далее) определяются, исходя из разностей первого порядка с помощью рекурсии, то есть каждая использует предыдущую:

∆puk = ∆(∆p-1uk).

Таким образом строго определяются конечные разности любого порядка — ∆, ∆2, ∆3,... — и с ними можно работать.

ПЕРВОЕ ФУНДАМЕНТАЛЬНОЕ ОТКРЫТИЕ: КОМПЛЕКСНЫЕ ЧИСЛА И ОТРИЦАТЕЛЬНЫЕ ЛОГАРИФМЫ

В серии работ, начатых еще в Базеле, Эйлер открыл формулу комплексных чисел, впоследствии ставшую знаменитой. Он использовал ее для нахождения значения математической категории, до той поры неизвестной, — отрицательных логарифмов. Как мы уже сказали, для обозначения мнимой единицы, √-1, Эйлер использовал символ i.

С этого момента подразумевается, что если в арифметической формуле есть i, то

i= √-1.

Во время работы в Базеле Эйлер открыл формулу

exi = cos x + isin x

и преобразовал ее так, как только он, великий жонглер символами, был способен. Из этого простого выражения, известного как формула Эйлера, которое связывает комплексные числа с тригонометрией, в последующие столетия произошла, как мы увидим в главе 3, большая часть математического анализа.

Во времена Эйлера пользовались большой популярностью логарифмы — инструмент вычисления, открытый в XVI веке. Однако их потенциал оставался невостребованным вплоть

до появления работ швейцарского ученого. Представим их определение: если а положительное число, называемое основанием, N также положительное число и верно равенство

N = αx,

то говорится, что х — логарифм N и пишется х = log2N. Или:

N = αlogN.

Если основание логарифма — число е, то пишется In N вместо log N.

Господа: это абсолютно верно и совершенно парадоксально, мы не можем понять этого и не знаем, что это означает, но мы это доказали и, следовательно, знаем: это правда.

Бенджамин Пирс (1809-1880), профессор Гарварда о так называемой

ФОРМУЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ ЭЙЛЕРА

Число -1 можно записать как -1 =1 + 0i и, следовательно, рассматривать его в качестве комплексного числа. Подставим его в формулу Эйлера:

-1 = 1 + 0i = cosπ + isinπ = exi.

Теперь рассмотрим только начало и конец этого равенства и используем натуральный логарифм:

In(-1) = In(exi) = πi.

Таким образом, Эйлер получил точное значение натурального логарифма от -1, отрицательного числа. На этом ученый приостановил интеллектуальную атаку на данную область и уехал в Санкт-Петербург. Только в 1751 году, почти 25 лет спустя, Эйлер обнародовал этот результат в надлежащем виде вместе со многими другими в фундаментальном труде "Введение в анализ бесконечно малых".

Как древние воины, которые продолжали выпускать стрелы даже при отступлении, Эйлер уехал в Россию и отложил изучение отрицательных логарифмов, продемонстрировав, тем не менее, свое будущее оружие.

ГЛАВА 2

Ряды, постоянные и функции: Эйлер в России

Уже в возрасте 20 лет Эйлер стал членом Петербургской академии наук. Так начался период его математического творчества, которому нет аналогов в истории данной науки. В это время ученый открыл гамма-функцию (Г), дал определение постоянной е и сделал другие важные открытия в анализе и теории чисел, а также нашел решения двух задач, имевшие значительные последствия: Базельской задачи и задачи о мостах Кенигсберга.

Эйлер ехал в Россию без особого энтузиазма: помимо сурового климата, его ждала страна, где пользовались другим алфавитом. Однако это было самой меньшей из трудностей, поскольку Эйлеру легко давались иностранные языки: он хорошо знал латынь, греческий, французский и немецкий и добавил к этому списку еще и русский. Этим Эйлер отличался (в лучшую сторону) от других иностранных членов Академии. Здесь впервые появился заморский ученый, с которым можно было поговорить и чья речь была понятна, которому можно было писать, который потрудился научиться выражать свои мысли на местном языке. К тому же он обладал блестящей эрудицией и огромной любознательностью по отношению ко всему, что его окружало. Получив звание члена Академии картографии — один из многочисленных его титулов, — Эйлер восхищался российскими успехами и делал весьма лестные сравнения с западной картографией, с которой был знаком до этого.