Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
До предела чисел. Эйлер. Математический анализ - Коллектив авторов - Страница 21
РИС. 1
РИС . 2
и затраты становятся минимальными. Эйлер был первым ученым, исследовавшим область эвольвентного зацепления, а его идеи привели к созданию уравнений Эйлера — Са- вари, которые используются в этой области и сегодня.
РИС.3
Рисунок зубьев пилы, созданный в соответствии с исследовании- ми Эйлера.
Зубья пилы
Помимо шестеренок, Эйлер также интересовался зубьями пилы (рисунок 3) и в 1756 году написал по этому вопросу статью на 25 страницах. В ней содержатся формулы, в которых учитывается количество зубьев, угол их наклона, степень входа зуба в дерево и так далее. Некоторые его выводы сегодня повергают в изумление: Эйлер рекомендовал использовать пилы длиной 1,2 метра и пилить целыми группами пильщиков.
Третьим и самым важным событием, оказавшим влияние на Эйлера в этот период, стала смерть его жены Катерины в 1773 году, после почти 40 лет брака. Ученый женился повторно — на своей свояченице Абигайл. Несмотря на все жизненные удары, он продолжал публиковать новые работы в прежнем ритме. Хотя в прошлом он уже внес значимый вклад в теорию чисел своими работами о математических константах или о числах Ферма, историки единогласно утверждают, что большая часть открытий была сделана Эйлером именно в последние годы жизни. Нельзя не подчеркнуть также, что только этих его достижений в данной области — не очень популярной в то время — хватило бы, чтобы оставить в веках имя любого математика.
ЭЙЛЕР И ДИОФАНТОВЫ УРАВНЕНИЯ
Эйлер уже в 1735 году внес большой вклад в изучение диофан- товых уравнений, являющихся центральной частью теории чисел. Диофантово уравнение — это уравнение с целыми коэффициентами, для которого возможны только целые решения. Такое название происходит от имени древнегреческого математика Диофанта Александрийского, который первым занялся их изучением.
Эйлер также попал под их очарование; большая часть его работ по теории чисел состоит в решении задач, оставшихся в наследство от Ферма, а того необычайно привлекал Диофант и область его научных занятий. Но время сбора урожая еще не пришло: Эйлеру не хватало многих мощных инструментов, чтобы начать систематическое изучение диофантовых уравнений, таких как алгебраическая геометрия и эллиптические интегралы, которые только начали появляться. И хотя Эйлер измерил границы царства Диофанта, он не смог его завоевать. Самым знаменитым доказательством в этой области, наверное, может считаться частичное доказательство теоремы Ферма, которое получил Эйлер. Согласно ей, невозможно было решить диофантово уравнение хn + уn - zn при n ≥ 3. Эйлер доказал, что это так при n = 3. Считается, что в доказательстве, которое он нашел уже в 1735 году, была ошибка, но впоследствии Эйлер сам ее исправил. Также при изучении другой категории чисел он подтвердил рассуждения для п - 4, уже выведенные Ферма. Универсальное решение для любого значения п появилось только в конце XX века благодаря Эндрю Уайлсу.
Эйлер также заинтересовался уравнением Пелля — дио- фантовым уравнением вида
у2 = Ах2 + 1,
где А — определенное число, а не неизвестная. Это уравнение решил Лагранж, который развил и расширил метод непрерывных дробей, проанализированный Эйлером. Современное название уравнения происходит от ошибки самого Эйлера, который перепутал Джона Пелля (1611-1685) с математиком
ДИОФАНТОВЫ УРАВНЕНИЯ
Диофант Александрийский (ок. 200 — ок. 284) известен как создатель диофантовых уравнений. Сегодня так называют уравнения с одной или более неизвестными, в которых все коэффициенты являются целыми числами и в качестве решений допускаются целые числа, хотя Диофант допускал и рациональные. Предполагается, что Диофант прожил 84 года, поскольку имеется эпитафия, в которой упоминается его возраст.
Прах Диофанта гробница покоит; дивись ей, и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругой он обручился.
С нею, пять лет проведя, сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей*.
* Перевод С. Н. Боброва.
Если мы размотаем этот клубок ребусов и запишем диофантово уравнение, скрывающееся в этом тексте, то получим
x/6 + x/12 + x/7 + 5 + x/2 + 4 = x, и решение ч = 84
Диофант и Ферма
Еще одной причиной известности Диофанта стала история создания теоремы Ферма. Вкратце она выглядит так: во времена Ферма были опубликованы почти все труды Диофанта из тех немногих, что дошли до наших дней. Читая книги, Ферма обычно писал свои комментарии на полях. Одно из предложений Диофанта, приведенных в тексте, натолкнуло Ферма на размышления и вдохновило его на создание теоремы, позже названной Великой теоремой Ферма. Она абсолютно безобидна с виду и кажется довольно простой. Ферма утверждал, что нашел для нее превосходное доказательство, которое не смог записать, поскольку на полях книги не хватило места; по крайней мере, такую версию распространил сын ученого. Тем не менее найти доказательство никому не удавалось до конца XX века (это сделал Эндрю Уайлс в 1995 году). Диофант написал 11 книг по арифметике, из которых до наших дней дошло только шесть (есть еще четыре, авторство которых не установлено). В них содержится более 100 задач, приводящих к диофантовым уравнениям, но в их решениях нет и следа математического метода, а только лишь проявление необыкновенного гения ученого.
Уильямом Браункером (1620-1684), признанным отцом этого знаменитого уравнения. Джулия Робинсон (1919-1985) с его помощью смогла решить десятую проблему Гильберта, одну из самых сложных в современной математике. Она состояла в том, чтобы проверить, существует ли алгоритм, способный определить, имеет ли произвольное диофантово уравнение целое решение. Окончательный ответ — нет.
ПРОБЛЕМА ЭЙЛЕРА И ДИОФАНТОВЫ УРАВНЕНИЯ
Знаменитая проблема Эйлера, сформулированная в 1769 году, связана с диофантовым уравнением вида
х4 + у4 + z4 = u4.
ГИПОТЕЗА О СУММЕ СТЕПЕНЕЙ
Французский математик Огюстен Луи Коши (1789-1857) вошел в историю благодаря своему таланту, сделанным открытиям, сформулированным теоремам и понятиям, а также противоречивому характеру. Его чрезмерная набожность и нежелание признавать заслуги коллег составляли темную сторону сложной натуры ученого. Однако с ним связан один анекдот, который показывает его более приятное лицо и его неподражаемое французское чувство юмора. Согласно этой истории, а точнее легенде, однажды Коши, который получал множество рукописей на проверку, в одной из них нашел доказательство, в стиле Ферма, несуществования целых чисел х, у, z, которые удовлетворяли бы диофантову уравнению:
- Предыдущая
- 21/26
- Следующая