Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

До предела чисел. Эйлер. Математический анализ - Коллектив авторов - Страница 16


16
Изменить размер шрифта:

Поскольку наш мир устроен наисовершеннейшим образом и является творением всеведущего Творца, во всем мире не происходит ничего такого, в чем не было бы воплощено какое-либо правило максимума или минимума.

Эйлер

В 1755 году математик итальянского происхождения Жозеф Луи Лагранж, которому было всего 19 лет, написал Эйлеру длинное письмо, в котором содержалось решение одной задачи с помощью усовершенствованной системы вариационного исчисления. В 1772 году Лагранж с благословения Эйлера, признавшего важность его работы, опубликовал свой метод.

Выражаясь современным языком, вариационное исчисление состоит в приведении в действие принципа наименьшего действия с аналитической точки зрения. Вначале запишем так называемый лагранжиан системы, обозначив его L, причем L = С - Р, то есть разнице между кинетической энергией С и потенциальной энергией Р. Лагранжиан — это функционал, функция от функций. Если ограничиться самым банальным случаем, в котором есть только путь, то есть функция x(t) времени, то лагранжиан будет иметь вид L(x,x',t), где ньютоновским знаком х' обозначается производная от х. Интеграл действия принимает вид:

S = ∫t0t1L(x,x',t)dt

и именно его необходимо минимизировать (а в некоторых случаях максимизировать). И Эйлер, и Лагранж, хотя и разными путями, пришли к дифференциальным уравнениям (обычно их бывает несколько) вида

d/dt ∂L/∂x' = ∂K/∂x.

Сегодня их называют уравнениями Эйлера — Лагранжа, и задача сводится к их решению. Уравнения Эйлера — Лагранжа встречаются в учебниках по анализу и в относительно простых условиях трансформируют интеграл действия в частные производные. Они являются центральным элементом вариационного исчисления. В приложении 4 мы приводим их формальный вывод.

Д’АЛАМБЕР И ЕГО ПРИНЦИП

В 1743 году Д’Аламбер (1717-1783) в своем Тгайё de dynamique ("Трактат о динамике") сформулировал принцип аналитической механики, который носит его имя. Согласно этому принципу, в динамической системе сумма виртуальных работ заданных сил и даламберовых сил равна нулю. Такая формулировка позволяет подойти к принципу наименьшего действия или наименьшего усилия и отсылает к Эйлеру, поскольку ведет к уравнениям Эйлера — Лагранжа:

∂L/∂xa - d/dt ∂L/∂xa = 0.

Это фундаментальная формула классической механики, где L — лагранжиан, а хa — так называемые обобщенные координаты системы.

Мудрец своего времени

Д’Аламбер, один из просвещенных умов эпохи, был незаконнорожденным сыном офицера Детуша, который не признал его. Его имя происходит от названия церкви, на ступенях которой его оставили (Сен Жан-Ле-Рон), и от предполагаемого спутника Венеры (Аламбер). Вместе с Дени Дидро

(1713-1784) он опубликовал перевод с английского "Циклопедии" Эфраима Чемберса, которая легла в основу Enciclopedie: она была дополнена 1700 статьями по математике, философии, литературе, музыке, а также знаменитым вступительным словом Discours priliminaire (1751). Д’Аламбер был принят в Берлинскую академию наук, Лондонское королевское общество, Парижскую академию наук, Французскую академию. Д’Аламбер привел первое доказательство (ошибочное и впоследствии исправленное Гауссом) основной теоремы алгебры: "Всякий вещественный многочлен степени n имеет n комплексных корней". Он также нашел превосходный признак сходимости рядов, в теоретической физике разработал так называемый оператор Д’Аламбера, а в теории вероятностей известен своим мартингалом Д’Аламбера. Параллельно с Эйлером он разработал способы улучшения астрономических линз.

ЭЙЛЕР И ГЕОМЕТРИЯ

Пока Эйлер жил в Берлине, он иногда отправлял статьи в Петербургскую академию, особенно если они касались тем, являющихся продолжением работ, в прошлом опубликованных в России. В 1763 году Эйлер представил Solutio facilis problematum quorundam geometricorum difficillimorum ("Легкое решение очень трудной геометрической задачи") — чисто геометрическое и довольно сложное сочинение в духе Евклида. Оно было опубликовано в 1767 году, когда ученый уже вернулся в Санкт- Петербург. В нем он впервые доказал, что в любом неравностороннем треугольнике ортоцентр (О — точка треугольника, в которой пересекаются три его высоты), центр описанной окружности (С — точка треугольника, в которой пересекаются три его срединных перпендикуляра) и барицентр, который также называют центроидом (В — точка, где пересекаются три медианы

треугольника), располагаются на одной прямой, впоследствии названной прямой Эйлера. Если треугольник равнобедренный, то на этой линии находится еще и инцентр (точка пересечения трех биссектрис). О центре окружности Эйлера ( мы поговорим ниже.

Помимо того что обнаружилось расположение на одной прямой точек О, В и С, удалось получить точное соотношение:

2d(B,C) = d(B,0).

Как видите, расстояние между барицентром и ортоцентром всегда в два раза больше расстояния между барицентром и центром описанной окружности (рисунок 11). И хотя, как мы уже сказали, инцентр располагается на той же прямой только в равнобедренном треугольнике, Эйлер нашел формулу, по которой можно рассчитать расстояние между инцентром и центром описанной окружности:

d2 = R(R-2r),

где R и r — радиусы описанной и вписанной окружностей соответственно.

РИС. 11

РИС. 12

Крыша олимпийского стадиона в Монако занимает наименьшую площадь, рассчитанную с помощью вариационного исчислении.

В 1750 году Эйлер обнародовал мегаскоп — прибор дли проецировании непрозрачных тел. Он состоил из двух вогнутых зеркал и двух ламп.

Марка, изображающей теорему для многогранников — одно из высочайших достижений Эйлера.

ЦЕНТРЫ ТРЕУГОЛЬНИКА

Центром треугольника называется точка Р, которая обладает особым геометрическим свойством по отношению к определенным линиям (высотам, медианам, биссектрисам и так далее) и определяет окружности или другие простые фигуры, обладающие некоторыми свойствами, связанными с исходным треугольником. Это очень туманное определение, но к нему можно добавить условие: точка Р должна быть инвариантом по отношению к симметриям, вращениям и расширениям. Примерами таких центров являются ставшие уже классическими ортоцентр, центр описанной окружности и инцентр, но существуют и другие. Статья Эйлера о центрах треугольника вызывала удивление у геометров (они полагали, что об особых точках этой фигуры уже сказано все), однако в последующие годы было открыто много других центров. Сегодня существуют сайты, посвященные их перечислению и изучению: например, Encyclopedia of Triangle Centers Кларка Кимберлин- га насчитывает более 3500 точек.

Через несколько лет после этого Карл Вильгельм Фейербах (1800-1834) и Олри Теркем (1782-1862) нашли окружность с центром СE, известную сегодня как окружность Эйлера. Она проходит через девять точек: через середины всех сторон треугольника, через основания всех его высот и, наконец, через срединную точку отрезка, идущего от каждой вершины к ортоцентру (рисунок 12). Существует еще одно соотношение, касающееся этих расстояний: