Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Природа описывается формулами. Галилей. Научный метод - Коллектив авторов - Страница 8
Но интеллектуальное событие, оказавшее наибольшее влияние на жизнь исследователя, произошло не в университете, а при дворе великого герцога Тосканского, Франческо I Медичи (1541-1587). Двор периодически переезжал из Флоренции в Пизу, а с ним путешествовал и Остилио Риччи (1540-1603), математик, специалист в геометрии, ученик Никколо Тартальи. В 1583 году Галилею удалось попасть на одну из лекций Риччи, посвященную Евклиду, и можно предположить, что она стала для юноши настоящим открытием. Для Риччи математика была средством решения практических задач, и 19-летний Галилей влюбился в нее настолько, что посвятил ее изучению все свое время и силы, забросив науку Галена. Он решил стать математиком и попросил Риччи быть его учителем. Но сначала необходимо было убедить отца Галилея, и Риччи это удалось. Теперь дорога была открыта, и Галилей мог полностью посвятить себя своему истинному призванию — продолжению традиций Архимеда и Евклида.
НИККОЛО ФОНТАНА ПО ПРОЗВИЩУ ТАРТАЛЬЯ
Тарталья (Заика, 1499-1557) был одним из самых известных итальянских математиков эпохи Возрождения. Он прославился главным образом благодаря открытию формулы для решения уравнений третьей степени — задачи, поставленной в математической дуэли, которую он с легкостью выиграл. Тарталья впервые перевел на итальянский язык труды Евклида и Архимеда.
В военной сфере известность получило применение им математических методов в вычислении траектории снарядов. Одна из задач, которую он решил в своем трактате «Новая наука» (1537), была следующей: под каким углом надо производить выстрел, чтобы снаряд летел на максимальное расстояние? Такими вопросами стали интересоваться только с XIII века, когда в Европе появился порох. Как указывает ученый в своей работе, считалось, что траектория снаряда делится на три части: прямую линию (когда действует сила от взрыва пороха), дугу (когда начинает действовать сила притяжения) и, наконец, вертикальную линию свободного падения. Только Галилей смог найти правильное решение, доказав, что траектория снарядов на самом деле описывается параболой.
В 1585 году он окончательно бросил учебу в университете Пизы, не закончив курса. Тогда же Галилей начал преподавать математику юношам из состоятельных семей Флоренции и Сиены, а также в монастыре Валломброза, где сам ранее учился.
Два года спустя он побывал в Риме, где познакомился с одним из самых известных математиков того времени, Христофором Клавием (1538-1612). С помощью этих знакомств Галилей пытался сделать себе имя и получить место в каком- нибудь университете. В 1588 году он прочел знаменитую лекцию о местонахождении и размерах ада Данте. Хорошие отношения со двором открыли перед ним карьерные перспективы, и в 1589 году, когда освободилась кафедра математики Пизанского университета, ее отдали Галилею. Он вернулся в статусе профессора в университет, где как студент потерпел неудачу. За небольшое жалованье Галилей работал в Пизе до 1592 года. После смерти отца материальное положение ученого ухудшилось, так как необходимо было обеспечивать мать, братьев и сестер. Жизнь ставила Галилея перед необходимостью новых достижений.
ПОД ВЛИЯНИЕМ АРХИМЕДА
Будучи учеником Риччи, Галилей попал под косвенное влияние подхода Архимеда к математике. Возможно, какое-то время он признавал представления Аристотеля о том, что математика не может описывать природу в силу своей конечности и что более глубокое познание мира возможно при помощи категории качества, а не количества.
Принцип Архимеда, согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытолкнутой им жидкости, вдохновил его на первое изобретение — маленькие гидростатические весы, позволявшие измерять удельный вес тел.
Первое, очень короткое, эссе Галилея так и называлось — «Маленькие гидростатические весы». Оно было опубликовано в 1586 году и объясняло принцип действия устройства. В нем Галилей утверждал, что вдохновился эпизодом, когда Архимед раскрывает обман с короной царя Гиерона. Галилей совсем не был уверен, что классическое объяснение было истинным:
«Как известно [...], Архимед обнаружил обман ювелира в короне Гиерона, но мы до сих пор не знаем, к какому способу прибег этот великий ученый, чтобы определить это. То, что он, по некоторым источникам, поместил в воду корону, а затем — такие же по весу слитки чистого золота и серебра и по разнице вымещенной воды понял, что к золоту в короне было подмешано серебро, кажется мне, если позволительно так выразиться, весьма грубым и неизящным».
По мнению Галилея, Архимеду для решения задачи понадобилось бы его изобретение — гидростатические весы. Они состояли из двух плечей: на одно подвешивается предмет, который надо взвесить, а на другое ставятся гирьки до момента уравновешивания (см. рисунок). Затем предмет погружается в воду, и его масса вычисляется заново. К разнице этих двух масс применяется принцип Архимеда. Поскольку плотность воды составляет 1 г/см³, надо просто использовать формулу плотности р = m/V.
Гидростатические весы позволяют сравнить плотности тел и таким образом определить их удельный вес.
Риччи, как и его учитель, считал математику практической дисциплиной, которая могла использоваться во множестве различных областей, от военного дела до архитектуры. Такая точка зрения очень отличалась от пифагорейских и платоновских представлений, по которым реальность заключалась главным образом в числах. По мнению пифагорейцев, числа определяли структуру природных явлений, и изучение математических соотношений являлось путем познания мира.
Галилей изучал математику в тесной связи с практикой и наблюдениями. Свое восхищение Архимедом он выразил в том числе в таких строках: «...тем, кто... читал и изучал искуснейшие изобретения столь божественного человека, ... слишком ясно, насколько все остальные ученые были ниже Архимеда...»
ГЛАВА 2
Телескоп и революция в астрономии
Благодаря использованию телескопа для человечества расширились границы Вселенной. Галилею удалось совершить невероятные открытия, а их распространение было одним из важнейших событий эпохи. Вселенная, которая была видна в его телескоп, совершенно не соответствовала традиционным представлениям о ней. Таким образом, Галилей убедился в истинности гелиоцентрической теории, хотя приверженность этому революционному учению и привела его годы спустя на суд Инквизиции.
В августе 1609 года Галилей вместе с многочисленными представителями венецианской знати поднялся на башню Сан Марко, чтобы продемонстрировать им полезное для защиты города изобретение. Оно показывало объекты на большом расстоянии и увеличивало их размеры, позволяя заметить вражеские корабли, когда они были еще достаточно далеко, и заранее приготовиться к их встрече.
Галилей справедливо предполагал, что использование прибора принесет ему деньги и почести, но очень скоро он нашел еще одно применение телескопа, которое могло удовлетворить его интеллектуальные амбиции, — изучение звезд. Это открытие лежало в начале нового витка развития науки, зародившейся еще в Египте и Древней Греции и на тот момент существовавшей тысячи лет. До настоящего времени телескопы предоставляют нам важнейшие сведения, которые расширяют знания о Вселенной.
До их появления астрономы пользовались приборами для вычисления (но не для наблюдения), такими как армиллярные сферы и астролябии, с помощью которых определяли положение звезд на небосклоне. Также исследователи использовали таблицы, по которым предсказывали положение планет в определенный момент года (и таким образом составляли звездные карты) или такие явления, как затмения.
- Предыдущая
- 8/30
- Следующая