Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Природа описывается формулами. Галилей. Научный метод - Коллектив авторов - Страница 13
Значительный объем полученных сведений убедил Браге в ошибочности геоцентризма, но не привел к коперниканству. Чтобы свести все данные в непротиворечивую систему, он создал собственную картину космоса, на полпути между гео- и гелиоцентризмом. Вселенная Браге оставалась ограниченной сферой с неподвижными звездами, с Землей в центре и Солнцем и Луной, которые вращались вокруг нее. Остальные планеты двигались не вокруг Земли, а вокруг Солнца.
Два его наблюдения, благодаря их фантастической точности, стали важнейшими аргументами в развенчании геоцентризма. В 1572 году Браге стал свидетелем появления сверхновой звезды, о которой мы уже упоминали. В области созвездия Кассиопеи вспыхнула ярчайшая точка. Последователи Аристотеля сочли ее метеорологическим феноменом, но Браге, вооруженный фактами, смог доказать, что вспышка находится за орбитами планет. Если бы это явление имело место рядом с Землей, произошел бы параллакс, которого в данном случае не было.
Система мира, предложенная Тихо Браге, являет собой нечто среднее между геоцентрической и гелиоцентрической моделями. Датский ученый всегда был против коперниканства, но в своих наблюдениях он пришел к схожим результатам.
То же самое случилось в 1577 году, когда безмятежность небес нарушила комета, и Браге вновь было что возразить сторонникам Аристотеля, которые считали, что это явление происходило между Землей и Луной. В ходе своих вычислений Браге пришел к другому выводу: орбита кометы находилась за Венерой, и к тому же она должна была пройти так называемые кристаллические сферы, несущие на себе планеты. Точность его измерений помогла разрушить видение мира, которое противоречило фактам и продолжало существовать только благодаря вере.
КЕПЛЕР: «БОГ ВСЕГДА ПОСТУПАЕТ ПО ПРАВИЛАМ ГЕОМЕТРИИ»
Иоганн Кеплер (1571-1630) родился в протестантской стране и узнал о системе Коперника в Тюбингене как о сугубо прикладном и искусственном подходе. И тем не менее он сразу же понял, что теория была верной. Как сторонник идей Платона, Кеплер был убежден, что за беспорядком и хаосом природы должен стоять порядок, а значит, если теория Коперника истинна, в ней должно быть множество соответствий и параллелей. Например, число планет — шесть вместе с Землей — должно быть чем-то обосновано, и это обоснование можно было выявить. Кеплер думал, что нашел его: планет всего шесть (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн), соответственно, между ними пять пространств, и в то же время существует только пять правильных многогранников: тетраэдр, куб, икосаэдр, октаэдр и додекаэдр. Таким образом, орбита каждой планеты и сфера, в которой она содержится, вписана в полиэдр. Все они, в свою очередь, заключены в сферу. Эта систематичность была рациональным доказательством того, что Земля является такой же планетой, как и другие. Кеплер не думал, что эти фигуры существуют на самом деле, но считал, что межпланетные пространства соотносятся друг с другом так же, как эти геометрические тела. Казалось, все сходится. И все-таки эти соотношения не были идеальными, что побудило Кеплера пересмотреть полученные данные.
БРАГЕ И УРАНИБОРГ
Тихо Браге родился в Дании в 1546 году и изучал право и философию в Копенгагене. По рассказам, его страсть к астрономии проснулась в 14 лет, когда он увидел солнечное затмение. Браге начал заниматься наблюдениями, и в 1576 году ему сделали предложение, которое он не мог отклонить: король Дании хотел, чтобы Браге создал астрономическую обсерваторию на острове Вен и руководил ею. На острове было построено два замка — Ураниборг (в дословном переводе «Небесный замок») и Стьярнеборг («Замок звезд»), — где располагались сооружения, приборы и необходимый персонал. В распоряжении Браге были большие финансовые средства и даже печатный станок, чтобы публиковать результаты открытий. После смерти короля ему пришлось оставить остров и перебраться ко двору императора Рудольфа II. Браге обосновался в замке недалеко от Праги, а его помощником стал Кеплер. До самой смерти в 1601 году он был придворным математиком Рудольфа.
Астрономическая обсерватория Ураниборг на острове Вен в Дании.
Необходимость в надежных сведениях с минимальной долей ошибки побудила его связаться с Браге, который принял ученого в качестве своего помощника. Одним из первых заданий для Кеплера было рассчитать траекторию Марса исходя из теории Браге. Вскоре между учеными начались споры о том, как следует интерпретировать полученные данные. После смерти Браге Кеплер вместо него стал математиком императора и получил свободный доступ ко всем интересующим его данным. В результате своих научных изысканий он сформулировал постулаты, известные сегодня как законы Кеплера.
Все пребывает в гармонии со всем.
Иоганн Кеплер
Изучая Марс, Кеплер, с одной стороны, заметил, что у планет разная скорость вращения и она уменьшается с их удаленностью. А с другой — он понял, что орбиты не могут быть правильными окружностями: это не согласовывалось с полученными данными. Версия математической Вселенной рушилась перед лицом фактов. В конце концов Кеплер пришел к выводу, что источник движения планет не может находиться на периферии космоса, как считал Аристотель, а заключается в самом Солнце. Таким образом, уменьшение скорости планет зависит от их удаленности от Солнца.
ОТКРЫТИЯ ГАЛИЛЕЯ
Галилей стоит особняком в ряду других астрономов эпохи. Он никогда не задавался целью собрать самые точные данные, чтобы использовать их для создания астрономических таблиц, и наблюдения никогда не наводили его на мысль о небесной механике, как Кеплера. Своим особым положением Галилей обязан открытиям, сделанным с помощью телескопа, и последствиям, которые они оказали на представления о мире.
ЗАКОНЫ КЕПЛЕРА О ДВИЖЕНИИ ПЛАНЕТ
Кеплер сформулировал три закона, описывающие движение планет. Первые два были опубликованы в 1609 году, а третий — в 1618-м:
— согласно первому закону, орбита планет являет собой эллипс, в одном из фокусов которого находится Солнце;
— согласно второму закону, радиус-вектор, соединяющий центр Солнца с центром планеты, описывает равные площади за равные промежутки времени (см. рисунок);
А = В = С
Рх = Положение планеты
— согласно третьему закону, квадраты периодов обращения планет соотносятся как кубы больших полуосей их орбит. Записав это в виде алгебраического уравнения, получаем, что если среднее расстояние равно r, а период вращения T, то T²/r³= константа.
Прежде всего, телескоп повлиял на собственные убеждения исследователя. Неизвестно, когда он принял идеи Коперника, поскольку всегда вел себя очень осторожно. Но в письме Кеплеру от 1597 года Галилей говорит, что прочитает его Mysterium Cosmographicum («Тайна мира») с таким же вниманием, с каким «годы тому назад отнесся к теории Коперника». И продолжает:
«...с помощью его [Коперника] теории мне удалось полностью объяснить многие явления, которые не могли быть в общем объяснены посредством противоположных теорий. У меня появилось множество аргументов, опровергающих противоположные представления, но я их до сих пор не решился опубликовать из боязни столкнуться с той же судьбой, которая постигла нашего Коперника».
- Предыдущая
- 13/30
- Следующая