Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Трехмерный мир. Евклид. Геометрия - Коллектив авторов - Страница 6
«Но поскольку приходится рассматривать начала искусств и наук применительно к данному периоду, мы говорим, что согласно свидетельству наибольшего числа исследователей геометрия впервые открыта у египтян и возникла она от измерения земельных участков, [...] как точное знание о числе возникло у финикийцев благодаря торговле и обмену. [...] Фалес, посетивший Египет, перенес в Элладу этот вид научного рассмотрения. [...] После них Пифагор перевел любовь к геометрической мудрости в разряд общеобразовательных дисциплин. [...] За ними в геометрии прославились Гиппократ Хиосский, открывший квадрируемые луночки, и Феодор Киренский, [...] Платон, стараниями которого геометрия — как и остальные науки — получила величайшее развитие. [...] Евдокс Книдский был... дружен с окружением Платона».
Математики, которые, по мнению Прокла, являются предшественниками Евклида
Имя
Цитата из Прокла
Сведения из разных книг «Начал», которые предположительно были им известны
Фалес Милетский
Первым перенес в Элладу эту теорию. Многое открыл сам, а для многого указал путь последователям, представив одно более общим способом, другое — более наглядным.
Определение 17 из книги 1, предложения 5,15, 26 и, возможно, 32. Предложение 12 из книги III.
Пифагор
Преобразовал доктрину в разряд общеобразовательных дисциплин. Рассмотрел принципы геометрии с самого начала. Исследовал теоремы умозрительно, открыл иррациональные величины и строение космических тел.
Книга 1: определения 1, 3 и 6; общее понятие 5; предложения 2,17, 32, 36, 37, 45 и 47.
Книга II: предложения 14 и 20.
Книга III: предложения 11 и 14.
Книга IV: предложения 11,12 и 15.
Книга VI: предложения 25, 28, 29 и 31.
Книга VII: определения 3, 4, 5,11 и 13.
Энопид
Касался многих геометрических вопросов и многим дал наилучшее решение с использованием линейки и циркуля.
Книга 1: постулаты 1, 2 и 3, предложения 12 и 23.
Гиппократ
Открыл квадрируемые луночки. Написал свои «Начала». Использовал метод сведения в задаче об удвоении куба.
Книга 1: предложения 9,10,11, 12,18,19, 20, 23, 24, 25, 28, 29, 31, 32, 45 и 47.
Книга II: предложения 6,12,13 и 14.
Книга III: определение 11; предложения 3, 20, 21, 22, 26, 27, 28, 29, 30 и 31.
Книга IV: предложения 5, 9,15.
Книга VI: предложения 19 и 20.
Книга VII: предложение 2. Книга
XIII: предложение 12.
Феодор
Знаменитый геометр.
Результаты книги II или 1, предложение 47.
Платон
Математические науки получили его стараниями величайшее развитие. Его математические рассуждения пробуждают восторг в философах всех времен.
Ледамант, Архит и Теэтет
Жили в одно время с Платоном. Благодаря им появились новые теоремы и геометрия стала более научной.
Результаты книг X и XIII.
Леонт
Составил свои «Начала» и нашел условия, при каких некоторые задачи могут быть разрешены и при каких нет.
Евдокс
Увеличил число так называемых общих теорем и, воспользовавшись результатами Платона о сечениях, разработал множество их видов.
Книга V:определения 4 и 5 и общие предложения.
Книга X: предложения 1 и 2.
Книга XII: предложения 5,6, 7 и 10.
Менехм и Динострат
Первый был учеником Евдокса, второй известен как его брат. Сделали геометрию еще более совершенной.
Филипп из Менде
Работал под руководством Платона. С ним геометрия достигла зрелости.
Сочинение Прокла написано под явным влиянием «Истории геометрии» Евдема Родосского и неоплатонизма. В нем не указаны имена астрономов — последователей Евдокса, не упоминаются перипатетики и сам Аристотель, а также Аристей Старший, который, возможно, был отцом учения о конических сечениях и геометрических местах. В нем нет Гиппаса из Метапонта и Филолая, нет софистов Антифонта, Брисона и Гиппия Элидского, нет атомистов Парменида, Зенона и Демокрита и даже Автолика Питанского, наконец, в комментариях не сказано ни слова об ученых-арифметиках. И все же этот текст заслуживает пристального внимания.
Фалесу и Пифагору различные авторы приписывают одни и те же достижения, а в случае с Гиппократом мы опираемся на свидетельство римлянина Симпликия, в свою очередь ссылающегося на «Историю геометрии» Евдема.
ГЛАВА 2
Структура «Начал»
Не меньшее значение, чем содержание, имеет структура «Начал»: Евклид отталкивается от краткого списка гипотез и переходит к дедуктивному доказательству многочисленных предложений. Такой подход сообщает этому произведению основательность, кажущуюся непогрешимой. Однако этот крепкий фундамент евклидового здания состоит в том числе и из кирпичиков общих представлений о математике, восходящих к философии Платона и Аристотеля.
«Начала» являются прямым наследием философии Платона и Аристотеля. По Платону, материальные объекты также являются идеальными, то есть существуют в мире идей. Аристотель возражал против этого, и можно утверждать, что текст Евклида написан под влиянием Аристотеля. И все же платоновская философия математики особо изучалась в Академии, о чем свидетельствует надпись над входом: «Да не войдет сюда не знающий геометрии».
Мы же ограничимся комментарием к аналогии разделенной линии, о которой Платон пишет в шестой книге «Государства» (см. схему на следующей странице). Существуют три воплощения предмета «кровать»: «кровать, созданная Богом», «кровать, сделанная плотником» и «кровать, нарисованная художником». «Бог, — говорит Платон, — желая быть истинным создателем истинно существующей кровати, [...] создал ее по природе своей единственной». Плотник же делает копии. А художник копирует плотника, но не «настоящую кровать».
В этом примере затрагивается вопрос существования, один из основных в платоновской философии, поскольку, по Платону, невозможно от эпистемологии (то есть знания или познания) перейти к онтологии (реальности, являющейся предметом познания). Он задается следующими вопросами: все ли кровати реальны, или же только некоторые, или ни одна? Что мы подразумеваем под «реальным», точнее, о какой реальности мы говорим, когда утверждаем, что научное знание состоит в «истинном познании реальности»? Если мы сузим вопрос до области математики, то как надо понимать математические объекты (вопрос эпистемологического характера) и что мы можем сказать об их существовании (проблема онтологического характера)?
По Платону, есть две реальности: реальность умопостигаемого мира идей, которую можно познать истинным знанием, и зримая реальность окружающего нас мира, о которой можно иметь лишь мнение. Приводя аналогию с разделенной линией, философ говорит об умопостигаемом, имея в виду, что мы можем понять только верхний уровень линии, неизменный уровень идей, нижний же отрезок относится к изменчивому миру, и о нем мы можем только составить мнение.
- Предыдущая
- 6/30
- Следующая