Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - Коллектив авторов - Страница 6
Модель мини-компьютера миссий «Аполлон» на эмуляторе Virtual AGC.
Превращение автоматической машины Тьюринга в универсальную представляет собой решительный шаг вперед в истории компьютеров. А если рассмотреть еще один факт, имеющий большую важность (знаменитый тезис Чёрча — Тьюринга), то можно сделать вывод, что изобретение компьютеров было уже совсем близко. Американский математик Алонзо Чёрч — одна из ключевых фигур математической логики — совместно с Аланом Тьюрингом сформулировал тезис, названный тезисом Чёрча — Тьюринга. Говоря современным языком, этот тезис устанавливает, что универсальная машина Тьюринга (и, таким образом, компьютер) может решать любые задачи, решение которых может быть выражено в виде алгоритма. Однако нужно учесть, что в то время слово алгоритм еще не использовалось, вместо него говорили «эффективный метод вычисления». Под алгоритмом мы понимаем совокупность шагов или правил, приводящих к определенному результату или решению задачи. Следовательно, для компьютера синонимом алгоритма является решение задачи. Всякий алгоритм обладает рядом свойств.
— Во-первых, количество шагов, приводящее к решению задачи, должно быть конечным, то есть последовательность, приводящая к решению, какой бы длинной она ни была, должна завершаться.
— Во-вторых, шаги или правила должны быть определены четко и однозначно. Приведем простой школьный эксперимент для «измерения числа я»: 1) обмотайте банку бумажной лентой, лишний материал ленты обрежьте; 2) снимите бумажную ленту и измерьте ее длину; 3) поместите банку между двумя книгами и измерьте расстояние между краями книг, соприкасающимися с банкой, для получения диаметра; 4) вычислите частное длины и диаметра. Полученная величина и будет я.
— В-третьих (хотя это требование является дополнительным), желательно, чтобы с помощью алгоритма можно было решить не только конкретную задачу, но все задачи подобного класса, например расставить слова по алфавиту.
— В-четвертых (это также дополнительное требование), путь к решению должен состоять из минимального количества шагов.
Например, процедура стирки состоит из следующих шагов.
— Шаг 1. Разобрать одежду по цветам. Белые вещи и вещи светлых тонов должны стираться отдельно от цветных и темных вещей.
— Шаг 2. Прочитать этикетки на одежде, чтобы выяснить максимальную температуру и способ стирки (а также сушки, глажки и так далее).
— Шаг 3. Насыпать в лоток стиральной машины порошок.
— Шаг 4. Уложить одежду в стиральную машину. Выбрать соответствующую программу и температуру.
— Шаг 5. Достать выстиранную одежду.
— Шаг 6. Конец программы.
На уроках математики в школе используется много простых алгоритмов. Например, решение системы уравнений методом подстановки предусматривает следующий алгоритм.
— Шаг 1. В обоих выражениях выделить одну неизвестную.
— Шаг 2. Уравнять выражения.
— Шаг 3. Решить уравнение.
— Шаг 4. Подставить полученную величину в одно из двух уравнений, где выделена одна неизвестная.
— Шаг 5. Решить получившееся в предыдущем пункте уравнение.
— Шаг 6. Конец программы.
Эти заключения приводят нас к выводу о том, что компьютер представляет собой машину Тьюринга, работающую с алгоритмами. Когда решение задачи может быть выражено в виде алгоритма, считается, что задача разрешима. Швейцарский инженер Никлаус Вирт (р. 1934), автор языков программирования «Алгол», «Модула-2» и «Паскаль», участвовал в разработке определения программы в 1975 году. Согласно его определению, программа — соединение алгоритма с формой организации данных внутри программы; организация данных также получила название структура данных. Отсюда происходит знаменитое выражение Вирта: алгоритм + структура данных = программа.
АЛОНЗО ЧЁРЧ, ЛЯМБДА-ИСЧИСЛЕНИЕ И «ЛИСП»
Несмотря на то что с Тьюрингом всегда ассоциировалась машина, носящая его имя, после того как с трудами этого исследователя познакомился другой замечательный математик, Алонзо Чёрч (1903-1995), последний опубликовал работу, которая отнимала у машины Тьюринга часть оригинальности.
В 1930-е годы Чёрч вместе со Стивеном Клейни (1909-1994) ввели Х-исчисление — абстрактную математическую систему для формализации и анализа вычислимости функций.
Функция — математическое выражение у = f(x), отражающее связь между двумя переменными, например длиной х и весом у синих китов, в виде выражения у = 3,15х - 192. Это понятие, предложенное в XVII веке Декартом, Ньютоном и Лейбницем, в 1930-е годы было пересмотрено с целью разработки общей теории математических функций.
Новый синтаксис
Одной из заслуг Чёрча считается введение нового синтаксиса для представления данного класса математических выражений. Так, если, например, мы вычислим значение выражения (+(*23)(*56)), при этом звездочка — оператор умножения, то получим 36, поскольку (2 · 3) + (5 · 6) = 6 + + 30 = 36. Математическая функция должна быть абстрактной. Также для λ-исчисления используется более сложное выражение (λx. + x1), означающее: «Функция (представленная символом λ) от переменной (здесь х), которая имеет вид λ(x) (представлена здесь как.), добавляет (оператор +) величину переменной (то есть х) к 1». Мы можем несколько усложнить предыдущее выражение, записав ((λ х. + х1)3), результат которого равен 4, поскольку мы указали, что х = 3. Предсказуемо, что для преобразования всех элементов λ-исчисления мы можем усложнять операции. Другой заслугой такого типа исчисления стало его влияние на теорию, изучающую компьютерное программирование.
Проблема остановки
Однако если λ-исчисление и получило известность, то только благодаря тому, что Чёрч использовал эту абстракцию для изучения проблемы остановки, придя в результате к понятию разрешимой задачи, то есть идеи, лежащей в основе машины Тьюринга. В свою очередь, Тьюринг в 1937 году доказал, что λ-исчисление и его машина эквивалентны, то есть представляют собой два пути, по которым можно прийти к одному результату. Когда машина Тьюринга обрабатывает одно из указанных выражений, например (+31), она останавливается после того, как получен результат, в данном случае 4, то есть эта задача является разрешимой. С практической точки зрения λ-исчисление вдохновило развитие так называемых функциональных языков программирования, одним из примеров которых является «Лисп» — важнейший язык искусственного интеллекта. Появился он в 1958 году благодаря Джону Маккарти (1927-2011), автору термина «искусственный интеллект». Среди характеристик, которые язык унаследовал от λ-исчисления, — использование скобок:
(defstruct persona
(имя Alan)
(возраст 41))
или более просто:
(format t «Привет, Тьюринг!»)
ДРУГИЕ МАШИНЫ ТЬЮРИНГА
В 1982 году нобелевский лауреат в области физики Ричард Фейнман (1918-1988) выдвинул захватывающую задачу, к которой мы обратимся в последней главе. После обнаружения ограничений в вычислительных способностях машин Тьюринга, помимо известной проблемы остановки (поговорим о ней в следующем параграфе), Фейнман предсказал существование вопросов, которые никогда не смогут быть обработаны компьютером. Он предположил, что и машины Тьюринга, и компьютеры не могут применяться для моделирования явлений квантовой природы, наблюдаемых на уровне атомов и не соответствующих классической физике. Ученый хотел сказать, что квантовые явления относятся к неразрешимым задачам, следовательно, они не могут быть обработаны обычным компьютером: машина Тьюринга, помимо прочих особенностей, должна для этого находиться одновременно в разных состояниях или одновременно считывать данные из разных ячеек. Компьютер для обработки квантовых явлений должен быть способным воспринимать не только состояния 0 и 1, но и возможные средние значения между 0 и 1 и одновременно использовать разные регистры оперативной памяти. После этого, в 1985 году, другой английский физик израильского происхождения, Дэвид Дойч (р. 1953), разработал новый класс машины Тьюринга, в котором эти ограничения были преодолены, — квантовую машину Тьюринга. Квантовые компьютеры способны моделировать неразрешимые задачи, такие как квантовые феномены, и, естественно, их ждет широкое применение.
- Предыдущая
- 6/27
- Следующая