Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Тайны чисел: Математическая одиссея - Сотой Маркус - Страница 5
Как открыли цикады, знание математики является ключом к выживанию в этом мире. Любому учителю математики, столкнувшемуся с проблемами мотивации своих учеников, можно рекомендовать рассказ о кровавых смертях в «Кубе» в качестве действенной пропаганды, чтобы заставить подопечных учить простые числа.
Почему писатели-фантасты любят простые числа?
Когда писатели-фантасты хотят, чтобы инопланетяне вступили в общение с землянами, они сталкиваются с определенными проблемами. Предполагают ли авторы, что инопланетяне настолько умны, что стремительно обучаются местному языку? Или они изобрели искусный автоматический переводчик наподобие Babel Fish?[1] А может, литераторы полагают, что каждый во Вселенной говорит по-английски?
Одно из решений, к которому прибегает ряд авторов, состоит в использовании языка математики – единственного по-настоящему универсального языка. Его первые слова, который должен знать каждый, своего рода строительные кирпичики речи, – простые числа. В романе Карла Сагана «Контакт» Элли Эрроуэй, участвующая в программе ПВЦ (поиск внеземных цивилизаций), обнаруживает сигнал. Она вскоре понимает, что это не фоновый шум, а последовательность импульсов, которые являются двоичным представлением чисел. Когда она переводит их в десятичную систему счисления, то моментально понимает закономерность: 59, 61, 67, 71 – все эти числа простые. Разумеется, в продолжении сигнала также содержатся простые числа, и они доходят до 907. Это не может быть делом случая, заключает она. Кто-то говорит «привет».
Многие математики полагают, что, даже если на другом конце Вселенной имеется другая биология, другая химия или даже другая физика, математика будет одной и той же. Изучающий учебник математики житель планеты, вращающейся вокруг Веги, будет по-прежнему считать числа 59 и 61 простыми. Ведь, как выразился знаменитый кембриджский математик Г. Х. Харди, эти числа являются простыми «не потому, что мы так считаем, и не потому, что наше сознание сформировалось тем или иным образом, а потому, что так устроена математическая действительность».
Знание о простых числах объединяет Вселенную, но все же интересно задаться вопросом, рассказывают ли истории, подобные этой, в других мирах. То, как мы изучали эти числа на протяжении тысячелетий, привело к открытию нами ряда важных истин в отношении простых чисел. На каждом этапе данного пути мы видим отчетливый след той или иной культурной перспективы, замечаем математические лейтмотивы, соответствующие историческому периоду. Может ли статься так, что у других культур во Вселенной имеются другие перспективы, делающие очевидными им теоремы, еще не открытые нами?
Карл Саган не был первым, кто предложил использовать простые числа как средство общения, и не будет последним. Простые числа даже использовались НАСА при попытках установить контакт с внеземными цивилизациями. В 1974 г. с радиотелескопа Аресибо в Пуэрто-Рико было отправлено послание в направлении шарового звездного скопления М13, выбранного по причине огромного числа звезд в нем. Это увеличивает вероятность, что оно будет получено каким-то разумным существом.
Рис. 1.05. Послание, отправленное радиотелескопом Аресибо, в направлении звездного скопления М13
Послание состояло из последовательности 0 и 1, кодирующих черные и белые пиксели рисунка. На реконструированном изображении показано двоичное представление чисел от 1 до 10, схема строения ДНК, описание нашей Солнечной системы и эскиз самого радиотелескопа Аресибо. Принимая во внимание, что во всем послании лишь 1679 пикселей, изображение не слишком-то детально. Но выбор числа 1679 был намеренным, потому что в нем содержится ключ к расположению пикселей. 1679 = 23 × 73, поэтому существует лишь два способа расположения пикселей в виде прямоугольника. Если их разместить в 23 ряда и 73 колонки, то получится хаотичный рисунок, но расположите их другим способом – в 73 ряда и 23 колонки, и получится правильный результат. Звездное скопление М13 находится от нас на расстоянии 25 000 световых лет, поэтому ответ придет не раньше чем через 50 000 лет!
Хотя простые числа универсальны, способ их записи сильно менялся на протяжении истории математики. Он культурно зависим, что сейчас и проиллюстрирует наше стремительное путешествие по планете.
Какое это простое число?
Рис. 1.06
Некоторые из первых математических вычислений в нашей истории были сделаны в Древнем Египте. Вот так египтяне записывали число 200 201. Уже около 6000 г. до н. э. люди начали отказываться от кочевой жизни и селиться в долине Нила. С развитием египетского общества у него возникла потребность в числах, чтобы вести учет налогов, измерять земельные участки и строить пирамиды. Как и для своего языка, египтяне использовали иероглифы для записи чисел. У них уже была развита числовая система, основанная на степенях 10, как и в той десятичной системе, которая используется нами. (Этот выбор основан не на каком-то особом математическом значении данного числа, а на том анатомическом факте, что у нас десять пальцев.) Но им еще нужно было изобрести позиционную систему, то есть такой способ записи чисел, когда положение каждой цифры соответствует той степени 10, которую она считает. Например, цифры 2 в числе 222 соответствуют различным величинам в зависимости от их места. Вместо этого египтяне предпочли создать новые символы для каждой степени 10:
Рис. 1.07. Древнеегипетские символы для степеней 10. 10 –это стилизованная пяточная кость, 100 –кольцо веревки, 1000 изображает лотос
200 201 может быть довольно кратко записано таким способом. Но лишь попытайтесь записать простое число 9 999 991 с помощью иероглифов: вам понадобится 55 символов. Хотя египтяне не осознавали важность простых чисел, у них была разработана довольно сложная математика, включающая – что неудивительно – формулу для объема пирамиды и понятие дробей. Но их числовая система была не очень-то изощренной – в отличие от системы, используемой их соседями, вавилонянами.
Рис. 1.08
Так древние вавилоняне записывали число 71. Вавилонская империя, подобно Египетской, была сосредоточена вблизи главной реки – Евфрата. С 1800 г. до н. э. вавилоняне контролировали значительную часть современных Ирака, Ирана и Сирии. Для расширения своей империи и управления ею им пришлось мастерски овладеть обращением с числами. Их записи велись на глиняных табличках, и писцы использовали деревянные палочки, или стилосы, чтобы делать отметки на сырой глине, которая потом высушивалась. Кончик стилоса имел форму клина, и вавилонское письмо теперь известно как клинопись.
Около 2000 г. до н. э. вавилоняне одними из первых пришли к идее использования позиционной системы счисления. Однако они использовали не основание 10, как египтяне, а 60. У них были различные символы для обозначения чисел от 1 до 59, а когда они доходили до 60, то начинали слева новый разряд «шестидесятков», подобно тому как мы ставим слева цифру 1 в разряде десятков, когда число становится больше 9. Итак, простое число, показанное выше, состоит из одного «шестидесятка» и символа, обозначающего 11, что вместе дает 71. У чисел от 1 до 9 имеется скрытая связь с десятичной системой, потому что они представляются горизонтальными линиями, но затем 10 представляется своим символом (рис. 1.09):
- Предыдущая
- 5/15
- Следующая