Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Радио и телевидение?.. Это очень просто! - Айсберг Евгений Давыдович - Страница 68


68
Изменить размер шрифта:

И вот для уменьшения неприятного действия этой помехи сейчас во всех, вещательных системах цветного телевидения вместо тройки каналов Y, R и В используют сигналы Y, R — Y, В — Y, где сигналы цветности R — Y и В — Y называются цветоразностными.

Почему использование цветоразностными сигналов R — Y и B — Y вместо R и В уменьшает помехи? Дело в том, что на неокрашенных участках изображения цветоразностные сигналы обращаются в нуль. А так как даже в цветных телевизионных передачах неокрашенные пли бледноокрашенные участки составляют не менее 60–70 %, то на эту же цифру снижаются эти мелкоструктурные помехи.

Теперь я объясню, почему цветоразностные сигналы на неокрашенных участках изображения обращаются в нуль. С этой целью воспользуемся таким примером. Пусть перед камерой цветного телевидения расположен монохромный объект передачи — газетный лист. Исходящий от него свет дихроичными зеркалами и светофильтрами расщепляется на три потока основных цветов R, G и В. При помощи трех передающих трубок и соответствующих усилителей создаются видеосигналы R, G и В. Далее эти сигналы поступают на матрицы.

Матрицы — это схемы, осуществляющие алгебраическое сложение сигналов в нужной пропорции и полярности (рис. 208).

Рис. 208. Матрица, формирующая сигнал яркости.

Например, матрица, формирующая сигнал яркости Y, содержит четыре резистора с правильно подобранными их сопротивлениями. Поступающие на три входа этой матрицы сигналы R, G и В, сложившись в нужной пропорции, создадут яркостный сигнал Y = 0,30R + 0,59G + 0,11В.

Точно так же в соответствующих матрицах образуются цветоразностные сигналы R — Y и В — Y. Знак минус для сигнала Y в этих матрицах реализуется поворотом фазы этого сигнала на 180° при помощи лампового или транзисторного каскада.

Теперь вернемся к неокрашенному изображению газетного листа. Для такого изображения R = G = В = 1, следовательно, Y = 0,30·1 + 0,59·1 + 0,11·1 = 1, поэтому R — Y = 0 и В — Y = 0.

Для получения сигналов красного и синего цветов достаточно на каждый из этих цветоразностных сигналов наложить сигнал яркости:

(R — Y) + Y = R;

(В — Y) + Y = В.

Но как же получить сигнал G? Займемся немного математикой. Теперь, когда, кроме сигнала Y, имеем значения R и В, мы можем из формулы Y = 0,30R + 0,59G + 0,11В вывести, что 0,59GY — 0,30R — 0,11В.

Разделив обе части этого равенства на 0,59, получим:

G = 1,7Y — 0,51R — 0,19В.

Как видишь, при передаче сигнала яркости Y и цветоразностных сигналов (R — Y) и (В — Y) можно восстановить третий основной цвет G. Эти сложные функции выполняет декодирующее устройство, являющееся частью цветного телевизора.

Цветная передающая телевизионная камера

А теперь посмотрим, как при передаче создают сигналы трех основных цветов R, G и В, а также и сигналы яркости Y. Запомни сразу же, что нет необходимости получать сигнал яркости независимо от трех других, потому что его можно получить сложением их в соотношении, указанном формулой.

Для преобразования в электрические сигналы каждого из трех основных цветов нужно использовать одну из трех передающих телевизионных трубок.

Перед каждой из этих трубок следует установить фильтр соответствующего цвета, т. е. прозрачную пластинку, окрашенную в красный, зеленый или синий цвет. Само собой разумеется, что изображение на все эти три передающие телевизионные трубки должно подаваться от одного и того же объектива.

Каким образом это достигается?

Передаваемое изображение проецируется сначала на первое дихроичное зеркало, установленное под углом 45° относительно оси объектива. Знаешь ли ты, что так называют? Дихроичное зеркало представляет собой полупрозрачную пластинку; оно пропускает половину световых лучен, а другую их половину отражает. Отраженные лучи попадают на обычное зеркало, которое направляет их на передающую телевизионную трубку, предположим, снабженную синим светофильтром.

Прошедшие же через дихроичное зеркало лучи попадают на второе дихроичное зеркало, которое разделяет их на две части: отраженная часть лучей падает на обычное зеркало, направляющее их на передающую телевизионную трубку с красным светофильтром, а другая часть лучей, прошедшая через дихроичное зеркало, достигает передающей телевизионной трубки, снабженной зеленым светофильтром. Таким образом, с помощью обычных зеркал, а также таких необычных, как дихроичные, одно и то же изображение подается на все три передающие трубки и порождает там сигналы, соответствующие трем основным цветам (рис. 209).

Рис. 209. В передающей цветной телевизионной камере зеркала распределяют изображение между тремя передающими трубками, перед которыми установлены фильтры основных цветов.

Большинство передающих телевизионных камер для цветного телевидения имеет подобно описанному мною три трубки. Однако существуют камеры, имеющие четвертую трубку; эта трубка, перед которой нет цветного светофильтра, тоже получает изображение от единого объектива. Для этого в камере устанавливают дополнительно два зеркала, одно из которых дихроичное. В этом случае четвертая трубка служит для прямого формирования сигналов яркости. Но обычно сигналы У получают путем сложения (0,30R + 0,59G + 0,11В) соответствующих доз сигналов, поступающих от трех снабженных цветными светофильтрами передающих телевизионных трубок.

Передача трех сигналов

А теперь, Незнайкин, у тебя должен возникнуть вопрос, как передают три сигнала, а именно сигнал яркости Y и оба цветоразностных сигнала (R — Y) и (В — Y), которые получают подачей в противофазе каждой пары сигналов, подвергающихся вычитанию.

Естественно, что первой приходит в голову идея использовать дня этой цели три несущие волны, каждая из которых модулируется одним из передаваемых сигналов. Но при таком решении пришлось бы занять слишком широкую полосу частот, а количество передатчиков стало бы настолько велико, что диапазона частот уже не хватило бы. Кроме того, такой метод передачи потребовал бы утроить входные контуры и блоки УВЧ цветных телевизоров, что сделало бы их еще более сложными и дорогими. Учти, что цветные телевизионные передатчики используют только одну несущую волну. Ее модулируют сигналами яркости Y, благодаря чему черно-белые телевизоры превосходно принимают передаваемые таким способом изображения.

А как же передают оба цветоразностных сигнала? Для этой цели используют поднесущую волну. Мне необходимо объяснить тебе, почему ее так называют.

В телевидении несущая волна имеет частоту несколько десятков или даже сотен мегагерц. Ее модулируют по амплитуде сигналом с частотой 4,43 МГц. В результате возникают две полосы частот по одну и другую сторону от несущей. Как ты помнишь, одна из полос модуляции сильно подавлена. Таким образом, появляется только одна поднесущая, находящаяся в неослабленной боковой полосе.

Величина 4,43 МГц принята для всех цветных передач в Европе.