Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Радио и телевидение?.. Это очень просто! - Айсберг Евгений Давыдович - Страница 61


61
Изменить размер шрифта:

Л. — Я вижу, ты хорошо понял, как работает блокинг-генератор. Обрати внимание на то, что синхронизирующие импульсы, поступая на сетку через конденсатор С2, создают на резисторе R2напряжения, делающие сетку более положительной, что вызывает падение внутреннего сопротивления триода на какое-то мгновение раньше, чем это явление произошло бы самостоятельно без сигналов синхронизации.

Н. — Я констатирую, что и здесь применяют тот метод, согласно которому собственный период пилообразных сигналов немного продолжительнее периода вызывающих их импульсов…

А нельзя ли сделать такой блокинг-генератор, заменив вакуумную лампу транзистором?

Блокинг-генератор на транзисторе

Л. — Разумеется, можно. Посмотри на соответствующую схему (рис. 192). Ты увидишь, что здесь конденсатор С заряжается через транзистор. В отличие от всех схем, которые ты до сих пор видел, наклонная и относительно длинная сторона зуба пилы создается здесь разрядом конденсатора; заряд же конденсатора, который, как ты увидишь, происходит почти мгновенно, вызывает быстрый возврат луча с конца строки или с конца полукадра.

Рис. 192. Схема блокинг-генератора на транзисторе.

Н. — Я предполагаю, что относительно продолжительный разряд происходит тогда, когда транзистор блокирован; в это время конденсатор С элементарно просто разряжается через резистор R. Что же касается быстрого заряда, то, как я догадываюсь, он вызывается тем, что база транзистора становится достаточно отрицательной, чтобы пропустить от эмиттера к коллектору ток насыщения. Но как происходит здесь блокирование, а затем насыщение транзистора?

Л. — Рассмотрим это, начиная с момента, когда конденсатор С полностью заряжен. Тогда его обкладка, соединенная с эмиттером, имеет дополнительный отрицательный потенциал, блокирующий транзистор.

Обрати внимание на то, что потенциал базы регулируется потенциометром R таким образом, чтобы обеспечить хорошее запирание транзистора. Этот потенциал оказывается устойчивым, ибо в качестве развязки используется электролитический конденсатор С1 большой емкости.

По мере разряда конденсатора С потенциал эмиттера становится более положительным, благодаря чему через транзистор начинает протекать ток. Проходя по подключенной к коллектору обмотке, этот ток наводит в обмотке, соединенной с базой, напряжение, делающее эту базу более отрицательной.

Н. — Я понял, что происходит! Чем более отрицательной становится база, тем сильнее возрастает ток коллектора, тем больше наводимое им через трансформатор напряжение, делающее базу более отрицательной, тем больше… Но все это, несомненно, происходит очень быстро. Таким путем ток транзистора стремительно достигает насыщения. А конденсатор С почти мгновенно оказывается заряженным. Затем все возобновляется.

Л. — Чтобы рассуждать так хорошо, ты, должно быть, проглотил не форель, а по крайней мере целого осетра, который наполнил твой мозг фосфором… Ты догадываешься, что, регулируя потенциометром R потенциал базы, устанавливают продолжительность периода каждого заряда и разряда конденсатора С. А этот период должен быть чуть больше интервала между синхронизирующими импульсами, которые через конденсатор С2 подаются на базу. Эти импульсы отрицательные и вызывают насыщение транзистора…

Существует множество других схем разверток. Но у меня не хватает времени объяснить тебе их все. Необходимо знать лишь то, что пилообразные сигналы всегда создаются зарядом и разрядом конденсатора. Я не хочу чрезмерно перегружать твою память. Отдыхай спокойно…

Комментарий профессора Радиоля

ПЕРЕДАЮЩИЕ ТЕЛЕВИЗИОННЫЕ ТРУБКИ

Какое устройство в телевизионных передатчиках преобразует световое изображение в электрические видеосигналы? Профессор Радиоль дает здесь объяснения; сначала он описывает иконоскоп — предшественник современных передающих трубок, затем переходит к различным моделям трубок, основанных на использовании материалов с фотоэмиссией или фотопроводимостью.

Теперь, дорогой Незнайкин, ты понял, как работает электронно-лучевая трубка, используемая как в телевизионных приемниках, так и в передатчиках. Электронный луч необходимо сфокусировать и заставить его отклоняться как по горизонтали, так и по вертикали, чтобы обеспечить просмотр строк и кадров. Но само собой разумеется, что в этих двух случаях пробегающий по строкам луч выполняет совершенно различные функции: если в приемниках он заставляет экран трубки светиться и при этом яркость каждого из элементов экрана пропорциональна интенсивности электронного луча, то в передающих трубках луч, пробегая по экрану, на который проецируется изображение, определяет изменения электрических сигналов в зависимости от яркости элементов передаваемого изображения.

Качества, которыми должна обладать передающая телевизионная трубка

К передающим телевизионным трубкам предъявляется ряд требований, обеспечить которые очень нелегко. Трубки должны обладать высокой чувствительностью к свету, чтобы можно было передавать слабо освещенные сцены, а также выдавать видеосигналы, строго пропорциональные широкой гамме яркостей; иначе говоря, их уровень насыщения должен быть как можно выше, и до его достижения кривая, характеризующая видеосигнал в зависимости от яркости просматриваемого элемента, должна быть как можно ближе к прямой. Кроме того, видеосигналы должны изменяться столь же быстро, как изменяется яркость последовательно просматриваемых элементов изображения. И если яркость какого-либо элемента изменяется, что нередко бывает при передаче подвижных изображений, то при следующей передаче этого элемента (что происходит всего лишь через 0,04 с) электрический сигнал должен соразмерно изменяться.

Как видишь, в требованиях, предъявляемых к передающей телевизионной трубке, недостатка нет. Ты догадываешься, что, кроме уже перечисленного, желательно, чтобы трубка не была слишком большой, чтобы она служила долго и при этом ее характеристики не изменялись, чтобы ею можно было легко пользоваться.

Посмотрим, как удается удовлетворить столько жестких условий.

Фотоэмиссия и фотопроводимость

Для преобразования яркости в электрические сигналы можно использовать вещества, обладающие фотоэмиссией или фотопроводимостью. Первые под воздействием света испускают электроны. У вторых же, когда на них падают световые лучи, снижается удельное электрическое сопротивление. К этой группе, в частности, относится селен, из которого делали самые первые фотоэлементы.

К веществам, обладающим фотоэмиссией, относятся прежде всего щелочные металлы, такие как литий, натрий, рубидий и цезий. Последний употребляется чаще других, потому что его чувствительность очень близка к спектральной чувствительности человеческого глаза: она идет от красного к фиолетовому и достигает максимума на участке зеленого, т. е. как раз посередине спектра видимого света.

Вещества, обладающие фотоэмиссией, часто называют фотокатодными веществами. В самом деле, под воздействием световых лучей они эмиттируют электроны, количество которых пропорционально интенсивности света.