Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Радио и телевидение?.. Это очень просто! - Айсберг Евгений Давыдович - Страница 40


40
Изменить размер шрифта:

Добавлю, что этот способ можно использовать и для нагрева диэлектриков, но тогда в нагреваемом теле создают электрическое (а не магнитное) поле. Для этого нагреваемое тело помещают между обкладками конденсатора, к которому прилагают напряжение ВЧ. Этот метод используют в медицине, где он называется высокочастотной диатермией.

Получение монокристалла

Вернемся, однако, к полупроводникам. Теперь, когда они хорошо очищены, им нужно придать безукоризненную кристаллическую структуру. Дело в том, что обычно полупроводник состоит из большого количества беспорядочно расположенных кристаллов. Такое скопище кристаллов надлежит превратить в один монокристалл с исключительно однородной кристаллической структурой во всей массе.

Для этого весь полупроводник нужно вновь расплавить; эту операцию также выполняют с помощью токов ВЧ, протекающих по катушке. В расплав вводят крошечный кристаллик, служащий затравкой для безупречной кристаллизации всей массы, и необходимое количество примесей типа n или р в зависимости от типа будущих транзисторов.

После охлаждения получают монокристалл, обладающий массой несколько килограммов. Затем его предстоит разрезать на большое количество маленьких кусочков, каждый из которых впоследствии будет превращен в транзистор. За исключением заготовок для транзисторов большой мощности эти кусочки имеют примерно 2 мм в длину и в ширину и несколько десятых долей миллиметра в толщину.

Сплавление

Вот мы и имеем заготовки для базы. Как из них сделать транзисторы?

Ты без труда догадываешься, что для этого по обе стороны базы нужно иметь примеси типа, противоположного тому, какой содержит база. Для выполнения этой задачи существует несколько способов. Если база сделана из германия типа р, то по обе стороны ее можно наложить крохотные таблетки из индия, представляющего собой примесь типа n. Нагреем все это до температуры 600 °C, при которой индий начинает плавиться; германий же как я тебе уже говорил, обращается в жидкость лишь при нагревании до 940 °C. Атомы индия вкрапляются в германий; проникновение это облегчается тепловым движением.

Таким образом, с одной стороны базы образуется эмиттер, а с другой — коллектор (рис. 133). Последний должен иметь больший, чем эмиттер, объем, так как токи рассеивают на нем большую мощность. Само собой разумеется, что к каждому из этих трех электродов необходимо припаять проволочный вывод.

Рис. 133. Расположение трех элементов, образующих транзистор.

Диффузия и электролиз

Только что описанный мною способ формирования эмиттера и коллектора используется при производстве сплавных транзисторов. Но эмиттер и коллектор можно также создать методом диффузии. Для этого полупроводник нагревают до температуры, близкой к точке плавления, и помещают его в атмосферу нейтрального газа, содержащую пары примеси, предназначенной для формирования эмиттера и коллектора. Атомы примеси легко проникают в полупроводник. В зависимости от дозировки паров примеси и продолжительности операции глубина проникновения может быть большей или меньшей. Это и определяет толщину базы.

Метод диффузии очень хорошо подходит для производства мощных транзисторов, так как он позволяет вводить примеси на больших площадях — таким образом можно сформировать эмиттер и коллектор необходимых размеров, достаточных для прохождения относительно больших токов.

Методу диффузии аналогичен электролитический метод, при котором полупроводник подвергают воздействию струек жидкости, содержащей примесь противоположного типа.

Как видишь, для производства транзисторов используют вещества в твердом состоянии — сплавление, в жидком — электролиз и в газообразном — диффузия.

Созданный одним из описанных методов транзистор помещают в герметичный и непрозрачный корпус, чтобы свет не вызывал в полупроводнике фотоэлектрического эффекта. В корпусе создают вакуум или заполняют его нейтральным газом, например азотом, чтобы предотвратить окисление германия или кремния кислородом воздуха. Корпуса для мощных транзисторов делают с таким расчетом, чтобы они могли рассеять тепло и тем самым предотвратить чрезмерный нагрев полупроводников. Такой корпус представляет собой теплоотводящий радиатор, он имеет большие размеры.

Высокие частоты ставят проблемы

К высокочастотному транзистору предъявляются требования в отношении толщины базы.

Если ее толщина очень мала, то между эмиттером и коллектором образуется относительно высокая емкость. Тогда токи ВЧ, вместо того чтобы проходить через два перехода, проходят непосредственно от эмиттера к коллектору, которые представляют собой своеобразные обкладки конденсатора.

Следует ли для снижения этой нежелательной емкости увеличить толщину базы? Ты, Незнайкин, несомненно, собираешься предложить это решение. Давай посмотрим, насколько оно рационально.

Увеличив расстояние, разделяющее эмиттер и коллектор, ты заставишь электроны проделывать между двумя переходами более длинный путь. Однако в полупроводнике скорость перемещения электронов и дырок довольно низкая: около 40 км/с. Предположим, что толщина базы составляет 0,1 мм. Для прохождения этой более чем короткой дистанции электронам потребуется 2,5 мкс. Это равно длительности одного полупериода тока с частотой 200 кГц, соответствующей волне длиной 1500 м. Как видишь, при такой толщине базы можно усиливать лишь токи, соответствующие длинным волнам. Вот почему в ВЧ транзисторах толщину базы необходимо сделать значительно меньшей. При толщине базы 0,001 мм можно усиливать волны длиной до 1,5 м, а для приема дециметровых волн, на которых, в частности, ведутся телевизионные передачи, база должна быть еще тоньше.

Как видишь, здесь мы сталкиваемся с двумя противоречивыми требованиями: чтобы емкость эмиттер — коллектор не была слишком большой, нужно увеличить толщину базы, а чтобы электроны проходили через базу достаточно быстро, ее нужно сделать как можно тоньше.

Решения проблемы

Как же выйти из этой дилеммы? Очень просто, снизить емкость не путем сокращения расстояния между двумя обкладками, в роли которых здесь выступают эмиттер и коллектор, а путем предельно возможного уменьшения их площадей на переходах.

Для этой цели примеси вводят таким образом, чтобы эмиттер и коллектор имели форму конусов, вершины которых обращены в сторону базы. Такой результат достигается, в частности, при обработке обеих сторон полупроводниковой пластинки струйками жидкости, которая под воздействием напряжения вызывает электролиз и тем самым постепенно вырывает атомы, создавая в полупроводнике настоящие кратеры. Когда донышки этих углублений оказываются достаточно близко друг от друга, изменяют направление напряжения, а в жидкость добавляют достаточное количество примесей, которые с помощью электролиза вводят в углубления, образующие эмиттер и коллектор (рис. 134).

Рис. 134. Электролитическая обработка с помощью струек жидкости.

Существует категория ВЧ транзисторов, в которых обращенный к эмиттеру слой базы содержит повышенное количество примесей, что повышает скорость электронов и тем самым позволяет усиливать более высокие частоты. Такие транзисторы называют дрейфовыми; они позволяют усиливать дециметровые волны.