Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Радио и телевидение?.. Это очень просто! - Айсберг Евгений Давыдович - Страница 28


28
Изменить размер шрифта:

Сначала генерируют колебания ВЧ с помощью одного из рассмотренных нами способов, в которых обратная связь порождает такие колебания. Затем их усиливают и модулируют токами НЧ, полученными в результате усиления микрофонных токов. Как осуществляется эта модуляция?

Это можно сделать посредством одновременной подачи на сетку лампы двух напряжений: ВЧ и НЧ. Сетка в этом случае должна получить такое смещение, чтобы рабочая точка находилась у подножья характеристики (см. рис. 78). Тогда во время отрицательных полу периодов НЧ анодного тока не будет, а во время положительных полупериодов НЧ приложенное на сетку напряжение ВЧ создаст анодный ток, амплитуда которого в каждый момент времени будет пропорциональна напряжению НЧ. Таким образом получают токи ВЧ, модулированные по амплитуде сигналами НЧ.

Я не хочу утомлять тебя тригонометрическими расчетами сложения синусоидальных кривых ВЧ и НЧ. Просто запомни, что при модулировании по амплитуде несущего высокочастотного тока с частотой/током низкой частоты F возникает ток, имеющий две частоты: f — F и f + F.

Например, если ток ВЧ с частотой 1000000 Гц модулируется током НЧ с частотой 3000 Гц, в результате получается модулированный ток с частотами 997 000 и 1003 000 Гц (рис. 91).

Рис. 91. Колебания с несущей частотой 1 000 000 Гц модулируются НЧ с частотой 3000 Гц.

В радиотелефонии полоса звуковых частот ограничена 4500 Гц. Ширина каждой из модулированных боковых полос, расположенных по обе стороны от несущей частоты, равна 4500 Гц. А спектр частот, который занимает радиотелефонный передатчик, следовательно, составляет 9000 Гц. Поэтому международное разделение несущих частот предусматривает выделение интервалов шириной 9 кГц во избежание одновременного приема двух передач и появления интерференционных свистов.

Для завершения описания устройства передатчика я добавлю, что, прежде, чем подать в передающую антенну, которая порождает электромагнитные волны, модулированные токи, их следует усилить по мощности (рис. 92).

Рис. 92. Структурная схема радиотелефонного передатчика с амплитудной модуляцией.

Отрицательные свойства обратной связи

Вернемся к рассмотрению обратной связи. До тех пор, пока мы ею управляем, все идет хорошо. Она позволяет повысить усиление или, если это нужно, генерировать колебания.

К сожалению, обратная связь может возникать самопроизвольно, что нередко имеет пагубные последствия. Катушка, по которой протекает анодный ток, может, помимо нашего желания, наводить напряжение в катушке, соединенной с сеткой, и вызвать тем самым появление колебаний. Это явление называют самовозбуждением.

Самовозбуждение может возникнуть также при наличии емкости между компонентами во входной и выходной цепях лампы.

Для предотвращения возникновения связей между магнитными или электрическими полями применяют экраны. Так называют металлические пластины или коробочки, являющиеся препятствием для распространения силовых линий. Распространение магнитных полей низкочастотных катушек и трансформаторов ограничивают стальными экранами. На ВЧ применяют преимущественно экраны из меди.

Тетрод

Однако имеется еще одна емкость, способная вызвать особенно опасную обратную связь. Это емкость между анодом и сеткой триода. Подумай о том, что положительный потенциал на сетке вызывает увеличение анодного тока. Поэтому падение напряжения на нагрузке, включенной в анодную цепь, увеличивается. В результате через емкость анод — сетка часть электронов попадет обратно на сетку, создав на ней еще более высокий положительный потенциал. Работа лампы станет неустойчивой, и может возникнуть самовозбуждение.

Здесь, как ты видишь, мы сталкиваемся с паразитной обратной связью. Как с ней бороться?

И в этом случае можно воспользоваться экраном. Нет, Незнайкин, не думай, что я смеюсь над тобой. Экран, о котором я сейчас говорю, представляет собой сетку со строго фиксированным потенциалом. Ее размещают между управляющей сеткой и анодом. Так получили четырехэлектродную лампу, потому что помимо катода, управляющей сетки и анода в ней имеется экранирующая сетка. Поэтому лампу называют тетродом (от греческого слова «тетра» — четыре).

Чтобы экранирующая сетка не мешала, а, наоборот, способспвовала прохождению электронов, на нее подают высокий положительный потенциал, который все же ниже потенциала анода. Для этой цели экранирующую сетку можно соединить с общей точкой двух резисторов, включенных последовательно между двумя полюсами источника высокого напряжения (рис. 93, а). Говорят, что эти резисторы образуют делитель напряжения. Можно также соединить экранирующую сетку через резистор с положительным полюсом источника напряжения (рис. 93, б). Имеющая положительный потенциал экранирующая сетка притягивает электроны, и образовавшийся таким образом ток создает падение напряжения на резисторе, необходимое для поддержания потенциала экранирующей сетки заданной величины.

Рис. 93. В схеме с тетродом для подачи положительного напряжения на экранирующую сетку можно использовать делитель напряжения из двух резисторов (а) или подключить экранирующую сетку к положительному полюсу источника высокого напряжения через резистор (б).

Благодаря экранирующей сетке действие анода на электронный поток уменьшается, а чем меньше действие анода на электронный поток по сравнению с действием управляющей сетки, тем больше усиление лампы.

Я надеюсь, что ты не забыл определение коэффициента усиления. Это отношение изменения потенциала сетки к изменению потенциала анода, вызывающие такое же изменение величины анодного тока. Из сказанного ты легко поймешь, что у тетрода коэффициент усиления значительно больше, чем у триода; он может достигать и даже превышать 1000.

Что же касается крутизны, то у тетрода и триода значения ее примерно одинаковы, так как экранирующая сетка не оказывает никакого влияния на результат воздействия потенциала управляющей сетки на величину анодного тока.

Ты, надеюсь, не забыл, что коэффициент усиления μ равен произведению крутизны S на внутреннее сопротивление Ri:

μ = Ri

И если у тетрода μ значительно больше, чем у триода, а значения S примерно одинаковы, то следует предположить, что и Ri тоже намного выше. В самом деле, внутреннее сопротивление тетрода очень велико. Оно может даже достигать 1 МОм.

Вторичная эмиссия. Пентод

До сих пор я говорил лишь о достоинствах, которыми обладает тетрод. Увы, наряду со своими прекрасными качествами он имеет большой недостаток: вторичную эмиссию. Когда испускаемые катодом электроны ударяются об анод, удар вызывает вылет некоторого количества электронов. Они покидают молекулы, расположенные на поверхности анода. В триоде это не вызывает нежелательных явлений, так как эти вторичные электроны сразу же притягиваются анодом, имеющим положительный потенциал.