Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Волшебный двурог - Бобров Сергей Павлович - Страница 103
(y + z) / ( 2у + z) = y / (y + z) = z / у
Пусть каждое из этих отношений равно х. Все ясно?
— Да, — ответил Илюша. — Треугольники подобны, а как получаются пропорции, я понял. Везде взято отношение основания к боковой стороне. Так как треугольники подобны, то отношение это во всех случаях одно и то же.
— Если мы теперь посмотрим на прямую BF, которая равна (у + z), то заметим, что точка G делит этот отрезок так, что весь отрезок относится к большей своей части, как относится большая часть к меньшей. Это деление и называется со времен глубокой древности золотым сечением.
— Ах, так вот почему вы ее называете Златоиссеченной! — вскричал Илюша.
— Именно поэтому! Но если у вас хватит терпения, то я могу вам еще рассказать насчет этой звезды немало интересного. Ибо это еще не все.
— 408 —
— Рассказывайте, — попросил Илюша. — Ведь сколько раз я ее видел, и даже в голову не пришло, что наша Красная Звезда такая знаменитая в геометрическом мире.
— Так вот, слушайте дальше. Если мы впишем в круг правильный выпуклый десятиугольник, то его сторона будет равна нашей величине х, помноженной на радиус большого круга, потому что если мы соединим концы одной из сторон десятиугольника с центром круга, то получим равнобедренный треугольник, угол при вершине которого, очевидно, равен тридцати шести градусам, то есть десятой части всей окружности. Боковые стороны равны радиусу описанного круга,
— 409 —
а основание — стороне десятиугольника. Следовательно, углы при основании будут иметь по семьдесят два градуса, и этот треугольник будет подобен только что рассмотренным. А если это так, то, следовательно, отношение стороны десятиугольника к радиусу снова равно тому же х. Ну, а теперь я посоветую вам, юноша, проделать еще кое-что своими собственными силами для того, чтобы ознакомиться поближе с Златоиссеченной Звездой. Согласны ли вы на это?
— Ну еще бы! — воскликнул Илюша. — Вполне согласен.
— Тогда вот что. Опишите круг около маленького пятиугольничка FGHIK (чертеж на странице 407) и найдите, как относится его радиус OG = r к радиусу большого круга OB = R.
Далее проведите прямые ВК и OG и из двух новых треугольников BKI и BGO попробуйте получить вот такое равенство:
R2 + R2x2 = (y + z)2
Что означает это равенство? Ясно, что R есть, во-первых, радиус описанного вокруг пятиугольника круга, а во-вторых, сторона вписанного шестиугольника. Поскольку мы ранее выяснили, что сторона правильного десятиугольника так относится к радиусу, как z к у, то, следовательно, эта сторона есть Rx.
Наконец, величина (у + z) есть не что иное, как сторона выпуклого пятиугольника. Следовательно, это наше равенство означает, что сумма квадратов длин сторон вписанных шестиугольника и десятиугольника равна квадрату длины стороны вписанного пятиугольника. И, сопоставляя это с известной вам теоремой Пифагора, мы можем утверждать, что стороны шестиугольника и десятиугольника могут быть сторонами прямоугольного треугольника, у которого гипотенузой будет сторона пятиугольника. Вы можете очень легко это проверить, вспомнив, что стороны этих вписанных многоугольников, будучи определены через радиус, равны:
Вот какие интересные выводы можно сделать из рассмотрения нашей Звезды. Что касается самого отношения золотого сечения, то оно примерно равно 0,618. Немало исследователей утверждало, что это самое приятное для глаза соотношение и что очень многое в природе, живописи, скульптуре и архитектуре строится именно по этому отношению.
— Конечно, эту Звезду очень приятно видеть, — сказал Илюша.
— Вполне с вами согласен, — отвечал Мнимий, — ибо это мудрый символ чистого и справедливого отношения.
— 410 —
Тут на чертеже, который был против Илюши, исчезли линии круга и выпуклого многоугольника, и осталась одна Звезда. Ее линии начали светиться золотистым светом.
Илюша стоял и любовался. Потом спросил у Мнимия:
— А как быть, если нужно разделить какой-нибудь отрезок в отношении золотого сечения? Можно получить это построением без многоугольников? И как вывести величину 0,618?
— О, это очень просто! — отвечал его собеседник. — Возьмем некоторый отрезок, который вы хотите разделить по золотому сечению. Пусть его длина будет а, и пусть большая часть его будет у. Построим квадрат на этом отрезке. Разделим его основание пополам и из средней точки основания проведем прямую в одну из вершин квадрата. Далее опишем из средней точки основания дугу радиусом, равным этой прямой.
Тогда диаметр получившегося круга разделится на три неравные части: ЕА = у, АВ = a, BF = у. Ясно, что отрезок AD = АВ есть не что иное по отношению к отрезкам ЕА и AF, как их средняя геометрическая, а вы уж ее строили в Схолии Пятнадцатой. При этом отметим: 1) отрезок CF есть сторона правильного выпуклого пятиугольника, вписанного в круг радиуса а; 2) отрезок BF есть сторона правильного десятиугольника; 3) отрезок СЕ есть сторона правильного звездчатого пятиугольника. А что это действительно так, вы можете убедиться, разобрав этот чертеж. Что же касается численной величины отношения золотого сечения, то она находится без труда из таких же соображений. Допустим, что мы хотим разделить величину а в отношении золотого сечения. Тогда одна часть будет у, а другая (а — у). Запишем:
y / a = (а — y) / y
у2 = а (а — у),
у2 = а2 — ау.
— 411 —
Перенесем ау в левую часть и возьмем у за скобку. Получим:
у (y + а) = a2.
Теперь поделим обе части на а2. Получаем:
у/a (1 + y/а) = 1.
А теперь вспомним, что
y/a = x
и подставим:
х (1 + х) = 1; х2 + х — 1 =0.
Открывая скобки, получаем квадратное уравнение. Положительный корень его и даст нам нужную величину. Просто и ясно!
— Хорошо, — сказал мальчик, — но, быть может, кстати, вы мне расскажете, как это получается, что вы можете делать такие преобразования поворота? Я как-то в толк не возьму, как это у вас выходит…
— Можно попробовать, — отвечал спокойно Мнимий. — Представьте себе, что перед вами висит диск, укрепленный в центре… ну хотя бы гвоздиком! И вы хотите его повернуть, скажем, против часовой стрелки на некоторый угол. Разберемте-ка, что для этого мы должны сделать. Наметим на краю диска некоторую точку (любую!). Она определяется некоторым комплексным вектором, не так ли? Но раз наш вектор есть комплексное число, которое после поворота должно измениться, значит, первый вектор заменится новым. Каким же? Ясно, что для этого надо первый вектор умножить на некоторый единичный вектор (мы ведь наш диск только поворачиваем, не более того!), аргумент которого равен углу φ. Давайте теперь множить. Из вектора (x + iy) мы должны получить новый вектор (x' + iy'), то есть умножить:
- Предыдущая
- 103/124
- Следующая
