Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Искусство схемотехники. Том 3 (Изд.4-е) - Хоровиц Пауль - Страница 106
Рис. 15.39. Методы модуляции при захвате, а — малый синусоидальный сигнал модуляции; б — большой прямоугольный сигнал модуляции.
В первом случае выходной сигнал фазового детектора пропорционален наклону сигнала (т. е. его производной), а во втором случае — сигналу (при условии, что нет других спектральных линий, связанных с модулирующим колебанием). По этой причине все эти простые резонансные кривые, наблюдаемые при ядерном магнитном резонансе, выглядят как дисперсионные кривые (рис. 15.40).
Рис. 15.40. Дифференцирование сигнала при обнаружении путем захвата.
При модуляции прямоугольным колебанием с большим фазовым сдвигом существует хороший метод подавления сигнала прямого прохождения, применяемый в тех случаях, когда это явление создает трудности в работе. На рис. 15.41 показано модулирующее колебание. Сдвиги выше и ниже центрального значения уничтожают сигнал и создают модуляцию типа «включен/выключен» на удвоенной частоте по отношению к основной несущей. Этот метод предназначен для специальных случаев и не следует прибегать к нему ради красоты.
Рис. 15.41. Схема модуляции для подавления сигнала прямого прохождения.
Модуляцию с прямоугольными колебаниями большой амплитуды очень часто используют в инфракрасной астрономии, где для переключения изображения инфракрасного источника приводят в движение вторичные зеркала телескопа. Этот метод популярен также в радиоастрономии и известен здесь под названием переключений Дикке.
Промышленные усилители с захватом имеют источники модулирующих колебаний с перестраиваемой частотой, следящий фильтр, оконечный фильтр с коммутируемой постоянной времени, высококачественный усилитель с низким уровнем шума и широким динамическим диапазоном (если бы шум не имел значения, то не нужно было бы и использовать обнаружение с захватом), а также линейный фазовый детектор с хорошими характеристиками. Кроме того, они допускают возможность использования внешнего источника модуляции. С помощью ручки можно регулировать фазовый сдвиг, следовательно имеется возможность максимально увеличить обнаруженный сигнал. Весь прибор заключают в красивый корпус, на котором имеется шкала для считывания выходного сигнала. Обычно цена этих приборов составляет несколько тысяч долларов. Их производят такие фирмы, как EG&G Princeton Applied Research, Ithaco и Stanford Research Systems. Бортовые компоненты среди прочих производит фирма Evans Electronics. Для того чтобы наглядно продемонстрировать возможности метода захвата фазы, мы обычно показываем студентам такой эксперимент. Мы используем захват фазы для выделения модулированного сигнала от небольшого светодиода, подобного тем, которые используют для индикации на панелях приборов. Частота модуляции имеет порядок несколько килогерц. Ток очень мал, и свечение диода при нормальном комнатном освещении можно заметить с трудом. На расстоянии около 2 м установлен фототранзистор, направленный в сторону светодиода, а его выход подается на схему захвата фазы.
Если свет в комнате выключить, то с фототранзистора на частоте модуляции будет сниматься очень слабый сигнал (смешанный с шумами), который легко обнаруживает схема захвата при условии, что постоянная времени равна нескольким секундам. Затем мы выключаем свет в комнате (флуоресцентное освещение), и в тот же момент фототранзистор начинает формировать колебания с частотой 120 Гц, амплитуда которых больше примерно на 50 дБ. Теперь с помощью осциллографа обнаружить сигнал от светодиода невозможно, а схема захвата спокойно обнаруживает этот сигнал. Для того чтобы убедиться, что схема действительно работает, достаточно поместить руку между светодиодом и детектором. Впечатление огромное!
15.16. Амплитудный анализ импульсов
Работа анализатора амплитуды импульсов основана на простом расширении принципа работы многоканального уплотнителя; этот прибор играет важную роль в ядерной и радиационной физике. Идея метода на редкость проста: импульсы, амплитуды которых лежат в некотором диапазоне, поступают на вход схемы пикового детектора с АЦП, которая преобразует относительную амплитуду импульса в адрес канала. Многоканальный уплотнитель затем наращивает выбранный адрес на единицу. В результате получаем график, который представляет собой гистограмму амплитуд импульсов. Вот и вся хитрость.
Широкое распространение анализаторов амплитуд импульсов обусловлено тем, что величина выходных импульсов многих датчиков заряженных частиц, рентгеновского и гамма-излучения пропорциональна энергии излучения, воспринятого датчиком (примером могут служить пропорциональные счетчики, детекторы на твердом теле, детекторы с поверхностным барьером, сцинтилляторы, рассмотренные в разд. 15.07). Таким образом, анализатор амплитуды импульсов преобразует выход детектора в энергетический спектр.
Анализаторы амплитуды импульсов обычно разрабатывались как специальные приборы, в состав которых входили интегральные схемы и отдельные дискретные компоненты. В настоящее время все более широко стали использовать мини-компьютеры и быстродействующие АЦП с импульсным входом. При этом в вашем распоряжении оказываются разнообразные полезные для дела аппаратные и программные возможности ЭВМ, такие, как вычитание фоновых сигналов, энергетическая калибровка и идентификация линий, память на дисках и лентах, управление экспериментом в интерактивном режиме. Это устройство заставляет микролуч потока протонов сканировать образец в двумерной плоскости, обнаруживает появившиеся рентгеновские лучи, сортирует их по химическим элементам и запоминает картину распределения по каждому элементу в образце; одновременно вы имеете возможность наблюдать рентгеновский спектр и само формирование картины распределения. Всем процессом управляет анализатор амплитуды импульсов, который и не подозревает, что на самом деле он представляет собой ЭВМ.
На входе анализатора амплитуды импульсов используется АЦП, с которым связана одна интересная особенность этой системы. Оказывается, что в данном случае нельзя использовать АЦП с последовательными приближениями, несмотря на его высокую скорость. Это связано с тем, что вы не сможете добиться точного равенства ширины каналов, плавная последовательность входных сигналов излучения даст волнистую базовую линию. Во всех анализаторах амплитуды импульсов используют так называемый преобразователь Уилкинсона, принцип работы которого основан на преобразовании входного сигнала с единственным углом наклона - входной импульс заряжает конденсатор, который затем разряжается постоянным током, а во время разряда быстродействующий счетчик (обычно используется частота 200 МГц) подсчитывает адрес. Недостаток такого анализатора состоит в наличии «мертвой зоны», величина которой зависит от амплитуды последнего импульса, а его достоинство — в точном равенстве ширины каналов.
Входы многих анализаторов амплитуды импульсов позволяют использовать эти устройства в качестве многоканальных уплотнителей. А почему бы и нет? Все необходимые элементы здесь в наличии. Среди крупных производителей анализаторов амплитуды импульсов такие фирмы, как Canberra, EG&G, Nuclear Data и Tractor-Nothern.
15.17. Преобразователи времени в амплитуду
В ядерной физике приходится определять распределение времени распада частиц с коротким временем жизни. Эту задачу помогает решить время-амплитудный преобразователь (ВАП), подключаемый на входе анализатора амплитуды импульсов. ВАП запускает генератор линейно-изменяющегося сигнала, когда на один из его входов приходит импульс, и останавливает его, когда импульс появляется на другом входе, при этом происходит разряд конденсатора и формируется выходной импульс, пропорциональный интервалу времени между импульсами запуска и останова. Достигаемое при этом разрешение измеряется в пикосекундах. Рис. 15.42 иллюстрирует измерение продолжительности жизни мюона, выполненное студентом путем определения времени задержки между захватом мюона космического излучения сцинтиллятором и его последующим распадом.
- Предыдущая
- 106/126
- Следующая
