Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Мир астрономии. Рассказы о Вселенной, звездах и галактиках - Мухин Лев Михайлович - Страница 12


12
Изменить размер шрифта:

Есть и другие трудности в стандартной модели. Для их преодоления недавно была разработана так называемая теория раздувающейся Вселенной, в рамках которой решается и проблема горизонта, и целый ряд других трудностей. Эта теория оперирует с такими удивительными понятиями, как «ложный вакуум», энергия которого в процессе раздувания мира переходит в обычную горячую плазму стандартной модели.

Но это еще не все. Согласно этой теории наблюдаемая Вселенная составляет ничтожную часть мира как целого. В мире может быть много «пузырьковых» вселенных, образовавшихся из полостей в ложном вакууме.

Фактически мы подходим здесь к идее, противоречащей на первый взгляд здравому смыслу, к идее рождения вселенных «из ничего». Эта идея, как пишет один из ее сторонников, кажется абсурдной всем, кроме теоретиков.

Модель раздувающейся Вселенной ставит очень трудные (сегодня, быть может, непреодолимые) задачи при «переводе» понятий, которыми она оперирует, на обычный, доступный каждому человеку язык. Так, например, академик Я. Зельдович использует вместо термина «ложный вакуум» термин «состояние», но суть дела от этого не меняется: во-первых, нелегко наглядно представить себе этот самый ложный вакуум, а во-вторых, если бы в модели раздувающейся Вселенной использовалось только это понятие, автору было бы, наверное, легче. Но когда даже в популярном изложении модели говорят о «доменах с переходом типа медленного скатывания», заранее предполагается знакомство читателя с разновидностями теорий великого объединения, квантовой хромодинамикой и т. д.

Поэтому, на мой взгляд, попытка «переложения» модели на обычный язык неизбежно будет связана с ее профанацией. Вот почему я сразу перешел к некоторым выводам из этой модели, которые, естественно, при такой манере изложения придется принять на веру.

Итак, мы упомянули о доменах. Это область пространства, содержащая нашу Вселенную. Модель раздувающейся Вселенной по-новому заставляет взглянуть на структуру нашего мира. Так, если на некотором этапе раздувания вся наблюдаемая Вселенная была размером с теннисный мяч, то вся область расширения (домен), в которой она умещалась, могла быть на 10–20 порядков больше. И таких доменов с разными вселенными могло быть много. Вывод состоит в том, что только малая часть пространства-времени мира в целом в ходе эволюции превращается во Вселенную.

Здесь мы вступаем в область довольно смелых спекуляций. Прежде чем совершить этот рискованный шаг, мне хотелось бы подчеркнуть, что на временах, больших, чем 10–30 секунды, темп расширения в модели раздувающейся Вселенной совпадает со стандартной фридмановской моделью. Само раздувание происходит в первые ничтожные доли секунды после «начала» и заканчивается примерно через 10–30 секунды. Главное, что отличает фридмановскую модель от модели раздувающейся Вселенной — геометрические факторы, о которых мы только что говорили.

Сценарий раздувающейся Вселенной имеет дело с картиной мира, в корне отличающейся от картины мира Фридмана, в которой между понятиями «мир» и «Вселенная» можно было поставить знак тождества. Вместо однородной и изотропной Вселенной мы получили мир предельно неоднородный и неизотропный, состоящий из множества огромных доменов размером 1050–10100 сантиметров. И лишь в одном из них словно дырка в куске хорошего швейцарского сыра сидит наша наблюдаемая Вселенная размером «всего лишь» в 1028 сантиметров.

Физические же параметры этой экзотической модели (температура, плотность энергии) через 10–30 секунды совпадают полностью с параметрами Вселенной Фридмана. Ну а теперь, если это короткое отступление успокоило читателя, поговорим немного о еще более рискованных вещах.

Я думаю, что вопрос о множественности вселенных — один из самых волнующих как с физической, так и с философской точки зрения. Этот вопрос очень глубокий и содержит в себе массу проблем. Из них главная, бесспорно, следующая. Если существует ансамбль вселенных, то каковы они? Похожи на нашу или нет? И чем, вообще говоря, определяется сходство или различие?

В декабре 1981 года в Таллине состоялся Международный симпозиум «Поиск разумной жизни во Вселенной». Большой интерес вызвал доклад И. Новикова, А. Полнарева и И. Розенталя «Численные значения фундаментальных постоянных и антропный принцип». В этой работе очень наглядно проявился новый (и очень модный) подход к вопросу, почему Вселенная именно такая, какой мы ее наблюдаем. Этот вопрос можно перефразировать следующим образом: почему значения фундаментальных физических констант имеют именно такие значения, которые наблюдаются в нашей Вселенной, а не какие-либо другие?

Сторонники антропного принципа дают достаточно простой ответ: «Вселенная такова, какой мы ее видим, потому, что в ней существуем мы». Этот залихватский ответ не может, разумеется, доставить чувства удовлетворения. Формулировка ответа сама по себе выглядит сомнительной. Действительно, более правильно было бы сказать: «Мы (наблюдатели) существуем потому, что Вселенная именно такая, какой мы ее видим».

Нельзя не согласиться с С. Хокингом, который говорит о том, что должно быть более глубокое объяснение устройства мира, чем то, которое предлагает нам антропный принцип. Это объяснение в первую очередь должно ответить на вопрос, который уже был поставлен выше. Почему скорость света имеет значение 300 тысяч км/сек, а не 500 тысяч км/сек? Почему заряд и масса элементарных частиц такие, а не какие-либо другие, и т. д.

Скажем сразу, что современная физика здесь бессильна. Мы можем говорить сейчас лишь о том, что было бы с Вселенной, если изменить численные значения физических констант. Это очень увлекательная проблема, и существенный вклад в ее решение внес советский физик И. Розенталь. Следуя сейчас, в частности, его идеям, можно обсудить возможный облик ансамбля вселенных с различными значениями физических «постоянных». Основная мысль здесь состоит в том, что даже небольшие их изменения приведут к радикальной перестройке структуры и свойств Вселенной.

Операция варьирования фундаментальных констант может показаться сначала и бессмысленной и неправомочной. Ведь недаром они называются фундаментальными, неизменными. Но… поскольку, с одной стороны, мы подошли к понятию ансамбля вселенных, а с другой стороны — сегодня нам неизвестно, в силу каких причин константы физики имеют именно те значения, которые они имеют, подобная операция выглядит достаточно логично.

Лишь в том случае, если в любой из возможных вселенных в силу каких-то пока неизвестных причин физические константы такие же, как и в нашем мире, ситуация становится тривиальной: в мегамире есть ансамбль одинаковых миров.

Разумеется, слово «тривиальной» использовано здесь в физическом смысле. С философских позиций реализация подобного случая не менее, а быть может, и более интересна, чем ансамбль вселенных с различными физическими константами. Вернемся, однако, непосредственно к предмету нашего обсуждения. Рассмотрим сначала, как будет выглядеть Вселенная, в которой масса электрона будет несколько больше, чем сейчас в нашей Вселенной.

Атом водорода в нашей Вселенной абсолютно стабилен. Он мог бы быть неустойчив при очень высоких температурах ~ 1010 K, когда энергетически разрешена реакция.

p + e– → n + ν

А при низких температурах эта реакция строго запрещена. Действительно, нейтрон тяжелей протона. В энергетических единицах (вспомним, что E = mc2) mn – mp ~ 1,3 МЭВ, а me ~ 0,5 МЭВ. Мы видим, что масса электрона существенно меньше, чем разница масс нейтрона и протона. Поэтому указанная выше реакция коллапса атома водорода запрещена. Для того чтобы она «пошла», массу электрона нужно увеличить примерно в три раза.

С помощью квантовомеханических расчетов можно оценить время жизни нового атома водорода с более тяжелым электроном. В случае троекратного увеличения массы электрона время жизни модифицированного водорода будет всего около месяца; если увеличить массу электрона в 4 раза, то новый атом будет жить и того меньше — сутки.