Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Азбука рисунков природы - Зимов Сергей Афансьевич - Страница 2
Рис. 1
Рис. 2
Мы изложили суть механизма образования структурных элементов полигональной сети. Здесь вроде бы все понятно.
А теперь перейдем к механизму образования из этих линий рисунка — полигональной морозобойной решетки. Теория механики разрушения очень сложная. Она оперирует девятью пространственными составляющими напряжений и деформаций (это тензоры). При разрушении материала могут одновременно образоваться как трещины отрыва, так и трещины сдвига, образующиеся под действием касательных напряжений. Но при анализе морозобойного растрескивания поверхности ситуацию можно существенно упростить. Максимальные напряжения и соответственно трещины возникают у поверхности, так как она охлаждается в наибольшей степени. Свободная поверхность разгружает напряжения в перпендикулярном себе направлении, поэтому ситуацию можно рассматривать как двумерную, приравняв вертикальные компоненты нулю. В этом случае, как известно, максимальное касательное напряжение равно
Tmax = ±(σ1 — σ2)/2,
где σ1 и σ2 — главные нормальные напряжения (они ориентированы взаимно-перпендикулярно). Максимальное касательное напряжение ориентировано под углом 45° к направлениям главных нормальных напряжений (рис. 2).
В однородном по составу и равномерно охлаждаемом плоском массиве во всех точках на поверхности и во всех направлениях растягивающие напряжения одинаковы (σ1 = σ2), при этом, как видно из формулы, Tmax = 0, т. е. деформации сдвига невозможны. При неоднородных условиях в каком-то направлении напряжения преобладают — поле напряжений анизотропно (σ1 > σ2). Но при охлаждении массива главные нормальные напряжения одинаковы по знаку и сравнимы по величине — во всех направлениях растяжение. Поэтому касательные напряжения всегда меньше растягивающих, т. е. и в этом случае деформации сдвига не возникнут, будут только разрывные нарушения. Это существенно упрощает задачу анализа механизма формирования сети морозобойных трещин в отличие, скажем, от тектонических деформаций, где зачастую сдвиги преобладают.
В соответствии с механикой разрушения развитие морозобойных трещин на поверхности и их взаимодействие должны определяться следующими общими закономерностями.
1. Трещина возникает при достижении напряжениями величины, равной прочности среды на разрыв.
2. При однородной прочности материала возникает она и в последующем сечет массив в направлении, перпендикулярном направлению максимальных растягивающих напряжений.
3. За счет концентрации напряжений в вершине трещины она может в дальнейшем проникать и развиваться в массиве, напряжения в котором меньше, чем прочность грунтов на разрыв.
4. При образовании трещины в окружающей ее полосе происходит разгрузка напряжений. Чем глубже трещина, тем в более широкой от нее полосе происходит их разгрузка.
5. Вблизи трещины (у ее вертикальной стенки) напряжения в направлении, перпендикулярном трещине, разгружаются полностью, а в параллельном направлении — частично. Из этого следует, что в непосредственной близости от первоначальной образование параллельной ей трещины невозможно, но возможность перпендикулярной не исключается.
Как будет показано в дальнейшем, рассмотренные положения механики разрушений достаточны, чтобы объяснить образование морозобойных решеток. С этими закономерностями мы постоянно сталкиваемся в жизни — «где тонко, там и рвется». Каждое из них, наверно, не требует специального более подробного объяснения. Все на первый взгляд не представляется сложным. Однако это впечатление обманчиво, и в существующих представлениях о возникновении морозобойных рисунков, как будет показано, есть важные неучтенные моменты.
Откроем учебник мерзлотоведения или геокриологии (любое издание) и ознакомимся с широкоизвестной теорией морозобойного растрескивания Б. Н. Достовалова. Эта теория начинается с вывода формулы, описывающей напряжения, возникающие в верхнем слое мерзлой толщи при ее охлаждении при наличии трещины. При выводе формулы Б. Н. Достоваловым рассматривалась модель, представляющая собой однородный ограниченный с одного края вертикальной поверхностью брусок толщиной h, лежащий на жесткой недеформируемой поверхности и жестко к ней прикрепленный. Брусок равномерно охлажден с поверхности, при этом перепад температуры внутри него по вертикали изменяется по линейному закону — на поверхности изменение температуры равно Δt, а у основания — нулю. В бруске из-за охлаждения возникают растягивающие напряжения. Верхняя часть бруска у края (у трещины) сжимается, и его вертикальная стенка при этом отклоняется на некоторую величину — верхний край бруска сдвигается. Требуется рассчитать, как изменяются растягивающие напряжения при удалении от края бруска (от трещины). Для этого на каком-либо произвольном расстоянии x от края бруска мысленно отсекалась его часть. При этом новая вертикальная стенка также отклоняется на некоторую величину S. В итоге верхняя часть отсеченного бруска становится короче на величину 2S. Далее приводится формула, показывающая, насколько при охлаждении сократится отсеченный отрезок бруска в случае, если бы он свободно, без трения, лежал на поверхности B = αΔtx, где α — коэффициент линейного температурного расширения. После этого приводится зависимость, показывающая, какие касательные усилия необходимо приложить к верхней поверхности бруска, чтобы при условии жесткого закрепления бруска к основанию она сдвинулась относительно нижней на величину S:
S = hTx/G,
где Tx — касательные напряжения, приложенные к поверхности; G — модуль упругости при сдвиге. Эта формула — закон Гука для сдвига. После этого обе эти зависимости приравниваются: B = 2S (?). Причем без особых оговорок касательные напряжения заменяются на растягивающие: Tx = σx (?). В результате получается формула для расчета растягивающих температурных напряжений на любом удалении от трещины:
σx = nαGx Δt/2h,
где x — расстояние от края бруска (от трещины); Δt/h — учитывая линейный закон распределения температуры — ее средний градиент по вертикали; п — поправочный коэффициент, который, как считает Б. Н. Достовалов, равен 1/2. После этого оговаривается, что если в эту формулу вместо σx подставить критическое напряжение, напряжение, при котором происходит разрыв массива, то можно рассчитать, на каком расстоянии (x) от первой трещины появится вторая.
В соответствии с этой формулой, по теории Б. Н. Достовалова, в однородных грунтах полигональная решетка формируется следующим образом. При равномерном охлаждении с поверхности протяженного однородного массива, как только напряжения достигают прочности грунтов на разрыв, образуется трещина и массив разбивается ею на две части. В окружении трещины происходит разгрузка напряжений. С удалением от нее их величина возрастает, и на каком-то расстоянии на границе зоны разгрузки они равны исходным — равны прочности грунтов на разрыв. Далее следуют важные моменты. Мы их процитируем: «При однородности материала расстояния от первой трещины, на которых напряжения достигают предельных значений, будут одинаковы и, следовательно, вторая трещина пойдет параллельно первой. Таким образом, свободная вертикальная поверхность предопределяет направление следующих трещин, и поверхность однородного массива разбивается параллельными трещинами на ряд полос одинаковой толщины»[3]. Это закон параллельности. В природе (по теории Б. Н. Достовалова) роль первой направляющей морозобойной трещины — роль вертикальной свободной поверхности — часто выполняют уступы террас, берег реки, озера. Они, как и трещины, разгружают массив. В этом случае первой образуется трещина, параллельная берегу реки, а за ней последовательно образуются другие. В итоге, конфигурация рисунка повторяет конфигурацию берегов рек и озер.
- Предыдущая
- 2/29
- Следующая