Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич - Страница 7
Начнем с последнего. Пусть нам известна форма и строение протяженного небесного тела Т. Как определить силу тяготения, с которой Т притягивает какую-либо частицу Q? Перейдем к ускорению — оно не зависит от массы пробной частицы (уникальное свойство гравитационного поля, открытое Г. Галилеем). Поэтому можно считать, что Т создает вокруг себя (и в себе самом тоже) поле ускорений, математически точное описание гравитационного поля. Как найти его? Разобьем мысленно Т на столь малые кубики, чтобы их размерами можно было бы пренебречь по сравнению с расстоянием до Q (рис.5).
Рис.5
Вектор ускорения ws, сообщаемого Q со стороны s-гo кубика, равен согласно (1)
ws=—(Gms/rs3)rs (6)
Поясним, откуда взялся минус и куб в знаменателе. Модуль ускорения равен Gms/rs2, и он умножен на единичный вектор —rs/rs направления от массы ms к точке Q (рис.5). Полное ускорение равно векторной сумме (6) по всем кубикам. Разумеется, так получается приближенная величина. Чтобы вычислить точную, нужно перейти к пределу, устремляя ребро кубика к нулю. В пределе получим тройной интеграл по телу Т. С помощью хорошего компьютера интеграл взять нетрудно. Но ведь даже для данного тела его нужно считать в огромном количестве точек пространства. Чаще всего идут другим путем. Как уже говорилось, Ньютон сумел вычислить интеграл для шара со сферическим распределением плотности и убедился, что внешние частицы шара притягивают в точности как материальная точка той же массы, помещенная в его центре. А дальше П.-С. Лаплас предложил следующую схему определения гравитационного поля Т. Во-первых, проще вместо векторного поля ускорений иметь дело со скалярным полем гравитационной потенциальной энергии Ер единицы массы Q. Оба поля однозначно определяют друг друга. Во-вторых, представим поле в виде ряда, т.е. суммы бесконечного числа слагаемых:
Ер=V0+V1+V2+… (7)
Здесь начальное слагаемое описывает притяжение шара с центром в центре масс Т и нам уже известно из формулы (4): V0=—К2/r. В отличие от силы, потенциал шара убывает обратно пропорционально первой степени расстояния от центра масс Т. Следующие слагаемые Vs убывают обратно пропорционально rs+1, причем V1=0. Если Q далеко, то достаточно взять несколько первых членов (7) или даже только начальный член, чтобы получить удовлетворительную точность. Иными словами, гравитационное поле любого тела с удалением от него все больше напоминает поле шара, в полном соответствии с наблюдением древних софистов, что издали и квадратная башня кажется круглой. Для близких Q (например, если Т — Земля, Q — ИСЗ) для высокоточного определения гравитации надо брать десятки и сотни слагаемых. Каждое из них представляет не очень сложную функцию координат точки Q. Например,
V2=(A1x2+A2y2—(A1+A2)z2+A3xy+A4yz+A5zx)/r5
Важно, что Vs содержит числовые коэффициенты. Например, в V2 их пять: A1÷А5. Эти коэффициенты можно определить, измеряя гравитационный потенциал, или ускорение на поверхности тела или вблизи нее. А можно следить за движением его искусственных спутников. В любом случае мы получаем систему многих алгебраических уравнений со многими неизвестными (коэффициентами типа As). Ее решение непросто, но современная математика и вычислительная техника с этим справляется.
Итак, мы описали два способа представления гравитационного поля любого тела: тройным интегралом и рядом Лапласа. Существует еще несколько способов, и в каждой конкретной задаче можно выбрать оптимальный.
Перейдем к вопросу о форме, которую придает гравитация небесному телу. Пусть выполнены следующие три допущения. Во-первых, тело изолировано и компактно, т.е. никакие другие тела на него не действуют, а самогравитация значительна. Во-вторых, тело находится в жидком, газообразном или пластическом состоянии. В третьих, в теле нет источников энергии. Насколько реальны эти допущения?
1. Полной изолированности, конечно, нет. В качестве примера сравним силы, с которыми притягивают каждого из нас Земля (F1) и Луна (F2). В подлунной точке (там, где Луна видна в зените) в момент, когда Луна в перигее своей орбиты, F2 максимальна. Но и тогда F2/F1≈4×10-6. На самом деле влияние Луны на форму Земли еще меньше. Именно оно вызывает приливы, о чем еще будет рассказано. Сейчас достаточно заметить, что изолированность в Солнечной системе выдержана в очень хорошем приближении.
2. Солнце состоит из газа, планеты-гиганты тоже, с возможным включением жидкой и твердой фазы в центральных слоях, что несущественно. Земля же тверда, и только в центральной части присутствует жидкая фаза. Но на длительные воздействия Земля отвечает как пластическое тело, течет, как воск. — А горы? — спросите вы. Да, некоторые напряжения твердая земля может выдержать. Горы не сплющиваются, впадины не заполняются у нас на глазах. Но высота гор не может превзойти значения порядка 10 км, иначе давление превысит критическое, вещество подошвы станет пластическим, начнет расползаться под действием веса, и в результате высота горы уменьшится.
Подобная пластичность наблюдается у всех больших тел, вплоть до 500 км в диаметре. У малых тел, меньших 200 км в диаметре, гравитация незначительна, предположение пластичности не выполняется. Промежуточный случай 200-500 км с трудом поддается анализу, поскольку нужно знать древнюю историю тел. Если они подвергались сильному нагреву, то в это время были текучими и успели принять форму, диктуемую гравитацией. В противном случае они представляют собой бесформенные глыбы.
3. У планет земной группы, спутников, малых планет внутренние источники энергии существуют в виде рассеянных — в основном в коре — радиоактивных элементов. Но их энерговыделение крайне незначительно и может вызвать перемешивание вещества со скоростями разве что в сантиметры за год. Юпитер выделяет тепло за счет продолжающегося сжатия. Это приводит к конвекции вещества и дифференциальному вращению (период оборота вокруг оси зависит от широты и глубины). Солнце и большинство нормальных звезд спокойно выделяет энергию ядерных реакций, происходящих в центральной части. В результате мы наблюдаем конвекцию и дифференциальное вращение, как у планет группы Юпитера. Это вносит незначительные поправки в чисто гравитационную форму небесных тел.
Можно заключить, что все три предположения выполняются для крупных тел Солнечной системы и для большинства звезд. Хотя бы одно из них неверно для тесных двойных звезд, туманностей и молекулярных облаков, мелких (менее 200-300 км в диаметре) тел, бурно выделяющих энергию звезд. Эти случаи исключим из рассмотрения. Какую форму примет самогравитирующее неподвижное небесное тело? Без всяких вычислений ясно, что форму шара, причем плотность вещества будет зависеть лишь от расстояния до центра шара, убывая от центра к краю. Всякое поднятие над поверхностью должно расползтись, выемка — заполниться, всякое более тяжелое включение должно опуститься, более легкое — всплыть. А нет ли еще каких-либо неожиданных экзотических фигур равновесия неподвижного тела? Нет, и это доказал наш великий соотечественник А.М. Ляпунов (1857—1918), петербургский академик. Как обычно, доказательство несуществования оказалось очень сложным. Стоило ли вообще им заниматься? Стоило, ведь интуиция может подвести, как это видно на примере эллипсоидов Якоби и груш Пуанкаре (см. ниже). Вот откуда шарообразность Луны, Земли, Солнца и множества других небесных тел: правит бал гравитация, а не мифическое совершенство небес.
- Предыдущая
- 7/88
- Следующая