Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Солнечная система (Астрономия и астрофизика) - Сурдин Владимир Георгиевич - Страница 37


37
Изменить размер шрифта:

Следует упомянуть еще один аспект вулканизма Венеры. С космических аппаратов наблюдалось внезапное резкое обогащение верхней части облачного слоя дымкой — мельчайшими аэрозольными каплями. Имеются сообщения, что подобное иногда наблюдалось и на Земле. Для образования избытка аэрозоля что-то должно было резко увеличить концентрацию сернистого газа. Было высказано предположение, что причиной служит гигантское вулканическое извержение. Но количество сернистого газа в атмосфере не может существенно измениться в результате одного извержения; для этого нужны миллионы лет. Механизм проще. Сернистого газа много в подоблачной атмосфере. В момент мощного извержения (как извержение Тамборы в 1815 г.) выбрасывается огромное количество тепла, которое разогревает приземные слои атмосферы и образует настолько мощную конвекцию, что восходящие потоки воздуха выносят достаточное количество сернистого газа в надоблачную атмосферу. Там он перерабатывается в серную кислоту и образует избыток аэрозоля. Подтверждается такое объяснение не только внезапностью обогащения, но и постепенным, в течение нескольких лет, уменьшением концентрации аэрозоля.

О строении недр Венеры пока мало данных. Ее безразмерный момент инерции, по-видимому, лишь чуть больше, чем у Земли. Пока он точно не найден; обычно принимают значение 0,333. Ядро планеты несколько меньше, чем у Земли. На него приходится около 12% массы (у Земли 16%). В целом недра Венеры должны быть похожи на земные недра, хотя литосфера может быть более толстой.

С внутренним строением Венеры и особенностями ее вращения связана проблема отсутствия у нее магнитного поля, что выделяет ее из планет земной группы. У Венеры и Земли близки размеры, средняя плотность и, вероятно, строение недр. Одна из современных теорий генерации магнитного поля у небесных тел (теория динамо) указывает, что напряженность магнитного поля планеты зависит от скорости ее вращения и прецессии полярной оси. Из этой теории следует, что дипольное поле Венеры должно быть слабым. Но измерения указывают на напряженность, еще по крайней мере в 10 раз более низкую, чем предсказывает теория. Похоже, что общего дипольного поля у Венеры вообще нет.

Те слабые хаотические магнитные поля напряженностью 15—20 нТл., которые замечены в ионосфере Венеры, индуцируются в ней вмороженным в солнечный ветер межпланетным магнитным полем, напряженность которого поблизости от планеты около 10 нТл. (10—4 Гс).

Литература

Атлас поверхности Венеры. М.: Изд-во ГУГК при СМ СССР, 1989.

Бурба Г.А. Номенклатура деталей рельефа Венеры. М.: Наука, 1988.

Ксанфомалити Л.В. Планета Венера. М.: Наука, 1985.

Лазарев Е.Н., Родионова Ж.Ф. Гипсометрическая карта Венеры. М.: ГАИШ МГУ, 2008.

Gazetteer of Planetary Nomenclature (Название, их происхождение, положение на карте и изображение деталей поверхности планет и спутников) http://planetarynames.wr.usgs.gov

Глава VI

МАРС

Характеристики Марса

Большая полуось орбиты 1,524 а.е.=228 млн. км.

Сидерический период обращения («год») 687,0 сут.=1,88 лет.

Синодический период (средний) 780 сут.=2,14 лет.

Сидерический период вращения («звездные сутки») 1,026 сут.=24ч. 37мин. 23с.

Средние солнечные сутки (1 Sol) 1,028 сут.= 24ч. 39мин. 36с.

Наклонение орбиты к эклиптике 1,9°.

Эксцентриситет орбиты 0,093.

Средняя орбитальная скорость 24 км/с.

Наклон экватора к орбите 25,2°.

Масса 6,42×1023кг.=0,107 М⊕.

Средняя плотность 3,94 г/см3.

Экваториальный радиус 3397км.=0,533 R⊕.

Полярный радиус 3376км.=0,530 R⊕.

Сжатие, (Re—Rp)/Re 1/163.

Ускорение свободного падения 3,71 м/с2.

Скорость ускользания (2-я космич.) 5,03 км/с.

Безразмерный момент инерции (в единицах MR2) 0,366

Сферическое альбедо (по Бонду) 0,16.

Поток солнечного излучения у поверхности 589 Вт/м2.

Полное поглощаемое излучение 1,8×1010 МВт.

Эффективная температура 210 К.

Температура у поверхности 150—260 К.

Давление у поверхности 6,1×10—3 бар.

Состав атмосферы (% объема) С02 (95,3), N2 (2,7), Аr (1,6).

Количество спутников 2.

В раннюю эпоху физические условия на Марсе были благоприятными для возникновения и развития простейших форм жизни. Одна из главных задач будущих исследований — установить, существовала ли когда-либо жизнь на Марсе, и если нет, то почему.

Второе открытие Марса

Марс с давних времен привлекает пристальное внимание ученых и любителей астрономии. Во время великого противостояния Марса в 1877 г. итальянский астроном Джованни Скиапарелли (1835—1910) составил подробную карту планеты, на которой изобразил множество тонких темных линий, соединяющих марсианские «моря». Во время следующих противостояний Скиапарелли наносил на карту все новые линии. Он не был первым, кто их заметил, но именно его наблюдения стали очень популярными и закрепили за линиями название canali. Скиапарелли не утверждал, что «каналы» имеют искусственное происхождение и вообще содержат воду. Ведь именно Скиапарелли доказал, что марсианские моря лишены воды. Итальянское слово canali следовало переводить как «проливы» и понимать исключительно как дань астрономической традиции: если «моря» чем-то соединены, то это «проливы». Но талантливый и очень энергичный американский астроном Персиваль Ловелл (1855—1916) воспринял этот термин буквально и поверил в искусственность марсианских каналов.

Ловелл принял эстафету в 1894 г. и число зафиксированных им каналов становилось все больше. В отличие от каналов Скиапарелли, которые соединяли темные участки Марса, каналы Ловелла могли и пересекать эти области, поскольку Ловелл считал их не морями, а участками растительности, а сами каналы — полосами растительности, протянувшимися вдоль водных артерий. Он сумел заразить своим энтузиазмом коллег-ученых и множество любителей астрономии. Газеты и журналы тех времен полны самых удивительных сообщений о Марсе. Писали, что марсиане страдают от жажды на безводной планете; что они из последних сил создают глобальные ирригационные сооружения и экономят последние капли воды… Был даже организован сбор средств на постройку ракеты, которая якобы должна была доставить воду на Марс (и это в XIX веке!), после чего и сборщики и собранные ими средства таинственным образом исчезли.

Волна фантазий о Марсе захватила и начало XX в. «Война миров» Г. Уэллса, «Аэлита» А.Н. Толстого и много других произведений посвящено марсианам, — добрым или безжалостным, мудрым и вымирающим. Появление радио усилило эффект «марсианских фантазий»: в 1930-х гг. в США возникла паника, когда по радио передавали хорошо поставленный спектакль по роману Г. Уэллса. К визиту марсиан публика была подготовлена. Интересно, что марсиане остались и в литературе второй половины XX в. Это лиричные «Марсианские хроники» Р. Брэдбери, приключения Лакки Старра среди бесплотных марсиан у А. Азимова, таинственные марсианские хищники у А. и Б. Стругацких, кинобоевики… Но это уже литература другого характера, скорее, стандартные декорации, населенные земными проблемами.

Всеобщий интерес к Марсу стимулировал его изучение; в результате средства наземной астрономии здесь были исчерпаны раньше, чем для других планет, и весьма своевременно появились космические аппараты. Когда в 1959 г. к Луне устремился первый космический зонд, стало ясно, что и Марсу недолго осталось ждать.