Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Энергия и жизнь - Печуркин Николай Савельевич - Страница 9
Рис. 6. Схема энергодающего протонного цикла.
Одной из главных особенностей живого является наличие специфических белковых катализаторов — ферментов. Работа этих катализаторов также циклична. Существовал специальный термин—«число оборота» фермента, т. е. сколько молекул субстрата «перерабатывает» одна молекула фермента в единицу времени. (Теперь эту характеристику называют молекулярной активностью). И этот показатель может быть очень большим, достигая, например, тысячи или даже миллиона в минуту. Миллион операций в минуту! — Такова «скорострельность» фермента, так работает эта сложная машина, циклически меняющая свою пространственную конформацию с огромной скоростью.
Основа деятельности зеленых растений — фотосинтез, и осуществляется он наверху, в листьях, содержащих хлорофилл. Газообмен с окружающей средой при фотосинтезе и дыхании растения осуществляется через межклеточные пространства — устьица, величина которых может регулироваться. А необходимая для фотосинтеза вода подается по специальной транспортной системе, которая называется ксилемой. Иногда эту систему тонких трубочек называют водопроводной. В воде растворены минеральные соли, необходимые для многочисленных биосинтезов всей органики растения. Все это поступает из корней под влиянием корневого давления и транспирации воды в листьях. Но корни тоже «хотят жить», а они гетеротрофны, и вот по другой системе трубочек — флоэме к ним устремляется источник энергии — образовавшийся в листьях сахар. Движущая физико-химическая природа этого потока, иногда очень быстрого (до 10 м/ч), не совсем ясна. Ксилема и флоэма и образуют циркуляционную систему растения, по которой проходит огромное количество вещества. Например, на фотосинтез используется 1–2% поступающей от корней воды, а остальное количество, в 50—100 раз больше, уходит при транспирации. Прямо или косвенно, через атмосферные процессы (осадки, конденсация, потоки) эта вода опять возвращается к корням. Так замыкается ее цикл.
Более совершенная и более замкнутая циркуляционная система имеется у животных, особенно у высших, включая человека. Здесь работают настоящие насосы, перекачивающие энергетическое топливо, кислород, питательные элементы и выводящие отходы метаболизма. Главным носителем является кровь. В легких она обогащается кислородом, который запасает в эритроцитах (дискообразных форменных элементах) и выделяет CO2 как результат окисления глюкозы в энергодающих процессах. В кишечнике она получает питательные вещества, образующиеся в результате метаболического усвоения, «переваривания» пищи. Самый главный мотор организма животного — это его сердце. Выталкивая через артерии обогащенную кислородом и питанием кровь, оно через систему ветвлений и капилляров доводит ее до каждой работающей клетки, где путем диффузии происходит обмен принесенных веществ на метаболические отходы. Венозная кровь, замыкающая цикл, прокачивается через выделительные системы, где освобождается от метаболитов и вновь приходит по малому кругу к легким. Удивительна работа сердца как насоса. За минуту у человека, находящегося в состоянии покоя, оно перекачивает около 5 л крови, а за час это составит уже по весу примерно 4–5 весов взрослого человека. За 70 лет жизни сердце человека в среднем перекачивает свыше 150 млн л крови, что более чем в 2 млн раз превышает вес человека. Такова работа этой циркуляционной системы, обеспечивающей жизнь организма.
Рассмотрим работу планетарного биотического круговорота. Очень конкретно и точно выразил свою точку зрения на «энергетический цикл жизни» один из выдающихся биохимиков нашего времени А. Сент-Дьёрдьи [1964, с. 30]: «Электроны сначала поднимаются на более высокий энергетический уровень фотонами (квантами света), а затем в живых системах падают на свой основной уровень, отдавая при этом свою избыточную энергию, которая приводит в действие машину жизни».
Рис. 7. Схема основного энергодающего цикла в биотическом круговороте. Параллельные стрелки показывают поток энергии Солнца.
Поток возбужденных, богатых энергией электронов, или электронный каскад, можно уподобить ряду водопадов: каждый водопад приводит в движение циклы вещества, вращает «турбины» ферментативных реакций, в ходе которых энергия электронов связывается в биологически полезной форме — в виде энергии макроэргических соединений, например всем известного аденозинтрифосфата, или АТФ, которую часто называют «энергетической валютой жизни».
И в данном случае, как и при описании других типов круговоротов, очевидна необходимость циклов вещества для длительного использования «вечного» потока энергии от Солнца.
Основой для расчета циклов главных элементов, прежде всего углерода, кислорода и водорода, составляющих 9/10 массы всех живых тел, может служить уравнение реакции фотосинтеза (или дыхания), представленное на рис.7. Для прямого протекания этой главной для жизни реакции необходима энергия солнечного света (Q = 120 ккал/моль), а обратная реакция — дыхание, связанная с потреблением глюкозы, осуществляется за счет использования энергии, запасенной в углеводах.
Для замыкания круговорота достаточно иметь всего два звена: фотосинтезирующее, автотрофное, которое производит органические соединения (растения суши и водоросли), и звено потребителей этой энергии, гетеротрофное (бактерии). Работа бактерий сопровождается освобождением элементов неорганического питания для последующего использования автотрофным звеном и т. д. (рис. 8).
Рис. 8. Схема биотического круговорота и потоков энергии через основные звенья упрощенной экосистемы.
Сплошные линии — потоки вещества; штриховые — передача энергии; стрелки, отходящие от круга, указывают потери энергии в каждом звене, т. е. отток энергии в космос.
Итак, растения-продуценты, фиксирующие и аккумулирующие солнечную энергию в своей биомассе, могут как потребляться травоядными животными, так и, отмирая, перерабатываться бактериями и грибами в запас неорганических биогенных элементов в почве и воде. При этом, казалось бы, что травоядные (хищники 1-го рода) создают новую биомассу. Но надо помнить, что для создания ее они расходуют примерно в 10 раз больше живого вещества с предыдущего уровня продуцентов. Соответственно и теряется энергия. Следующий трофический уровень — плотоядные (хищники 2-го рода), потребляя травоядных, также рассеивают энергию, но они уже могут использовать до 30% от потребленной энергии. Трофических уровней потребителей может быть несколько, обычно не более 4–6, из-за потерь энергии на каждом из них. Кстати, о человеке, с этой точки зрения, можно говорить как о хищнике 1-го, 2-го и последующих родов.
В конечном счете все органические молекулы расщепляются до неорганических соединений, пополняя запас биогенных элементов, но они опять расходуются на синтез фитомассы, самой большой массы органики на нашей планете.
Поскольку молекулы воды и углекислого газа находятся на низких энергетических уровнях, можно сказать, что цикл превращений идет от H2O до H2O через скачок с помощью квантов света до «горячих» протонов и электронов, или от CO2 до CO2 через образование энергетически богатых связей углерода, прежде всего глюкозы.
Общие показатели, определяющие масштабы и энергоемкость биотического круговорота на нашей планете, характеризуются следующими величинами [Ковда, 1975]: биомасса всех живых существ — 2,42·1012 т (по сухому весу), из них менее 1% приходится на долю мирового океана; первичная продукция (по сухому веществу) — 2,32·1011 т/год, из них 1,72·1011 т/год — продукция континентов; 0,6·1011 т/год — продукция Мирового океана. Из всей приходящей на поверхность Земли солнечной энергии на фотосинтез расходуется менее 0,1% (на суше несколько выше 0,1%, на поверхности Мирового океана примерно 0,04% из-за низкопродуктивных центральных частей, соответствующих пустыням суши).
- Предыдущая
- 9/46
- Следующая