Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Электроника в вопросах и ответах - Хабловски И. - Страница 73


73
Изменить размер шрифта:

Достоинство схемы заключается, в частности, в том, что вход схемы не охвачен петлей ОС и поэтому на входе отсутствуют сигналы, генерируемые схемой. Кроме того, выход схемы хорошо развязан от входа.

Рис. 10.26. Схема триггера Шмитта (а) и формы управляющего и выходного напряжения (б)

Как работает триггер Шмитта?

Схема триггера Шмитта показана на рис. 10 26. Работа схемы протекает следующим образом Если напряжение па входе (управляющее напряжение) равно нулю, транзистор Т1 заперт. В это время проводит транзистор T2, так как на него поступает соответствующее смещение с делителя , R1, R2. Делитель, смещающий транзистор Т2 (в основном ), подобран таким образом, чтобы транзистор Т2 не работал в режиме насыщения. Протекающий через транзистор Т2 ток создаст падение напряжения на эмиттерном резисторе , а это в свою очередь вызывает еще более глубокое запирание транзистора Т1. Увеличение входного напряжения выше определенного уровня вызывает отпирание транзистора Т1 и быстрый переход схемы в другое состояние. В этом состоянии напряжение на коллекторе транзистора Т1 убывает и, следовательно, уменьшается напряженке на базе транзистора T2, и он закрывается. Триггер остается в этом состоянии до тех пор, пока входной сигнал выше порогового уровня. Выходное напряжение в этом состоянии достигает своего максимального значения. Если управляющее транзистором Т1 напряжение уменьшается ниже порогового уровня, наступает рост напряжения на коллекторе транзистора Т1, а следовательно, увеличение напряжения на базе транзистора Т2, так что транзистор Т2 начинает проводить ток и происходит переброс схемы в первое состояние.

Из приведенного описания вытекает одно из типичных применений триггера Шмитта — использование его в качестве генератора прямоугольных колебаний. Триггер Шмитта применяется также в качестве амплитудного дискриминатора или порогового детектора.

Существуют многочисленные схемные модификации триггера Шмитта.

Что такое генератор Миллера?

Это схема, генерирующая напряжение линейной формы (пилообразное — прим. перев.), в которой для повышения линейности этого колебания используется ОС. Схема такого интегратора изображена на рис. 10.27.

Транзистор работает по схеме усилителя с ОЭ с высоким усилением и инверсией фазы. В этой схеме емкость С цепи с ОС, включенная между коллектором и базой, может быть пересчитана на входные зажимы как емкость С', умноженная на коэффициент усиления каскада по напряжению. Конденсатор С' заряжается от источника напряжения постоянным током через резистор R; напряжение на конденсаторе нарастает линейно. Если замкнуть ключ К, то конденсатор разряжается, а транзистор проводит ток. На выходе схемы получают колебание пилообразной формы. Прямоугольное колебание, подведенное к базе транзистора непосредственно или через дополнительный ключевой каскад, обеспечивает их работу в качестве ключей. Схема преобразует управляющее прямоугольное колебание в выходное пилообразное колебание подобно тому, как это делает интегрирующая цепь, отсюда часто встречаемое название интегратор Миллера.

Рис. 10.27. Схема генератора (интегратора) Миллера

Что такое генератор пилообразного напряжения с ООС?

Это генератор линейного пилообразного напряжения с ООС, которая предназначена для улучшения линейности колебания. Схема такого генератора представлена на рис. 10.28. Транзистор Т1 нормально находится в отпертом состоянии; напряжение на конденсаторе С в это время близко к нулю. Если бы в схеме не было транзистора Т2, то при отрицательном импульсе на базе транзистора Т1 происходил бы заряд конденсатора. В схеме с транзистором Т2, используемым в качестве эмиттерного повторителя при запертом транзисторе Т2, возрастающее напряжение на заряжаемом конденсаторе С через повторитель подается в точку соединения резисторов R1 и R2. При возрастании напряжения на конденсаторе потенциал в этой точке увеличивается и протекающий через резистор R2 ток остается почти постоянным. Это означает, что конденсатор заряжается постоянным током и, следовательно, напряжение на конденсаторе будет изменяться по линейному закону.

Рис. 10.28. Схема генератора пилообразного напряжения с ООС

Каково применение релаксационных генераторов?

Применений очень много. Типичным является использование генераторов в качестве источников сигналов. Одновибраторы позволяют получать выходные сигналы с длительностью большей, чем длительность запускающего импульса. Мультивибраторы используются, например, как генераторы, «навязывающие» свою частоту повторения другим схемам, в качестве центрального генератора тактовой частоты в цифровых схемах и т. п.

Нестабильные схемы или схемы с одним устойчивым состоянием также применяют для деления частоты — процесса, в котором каждый k-й импульс данной последовательности импульсов, поданной на мультивибратор, вызывает генерацию новой серии импульсов с частотой повторения, в k раз меньшей. Триггеры используются, в частности, в схемах счетчиков (счетных схем), предназначенных для счета электрических импульсов.

На чем основана синхронизация генераторов?

Это процесс, который состоит в том, чтобы сделать частоту колебаний генератора зависящей от частоты подведенного извне сигнала. В этом случае генератор, который в режиме свободных колебаний (несинхронизированном режиме) работает на собственной частоте, начинает работать на вынужденной, синхронизируемой частоте.

Процесс синхронизации проследим на рис. 10.29. Колебание (рис. 10.29, а) соответствует изменению напряжении на базе транзистора в несинхронизированном состоянии. К генератору подводится синхронизирующее колебание (рис. 10.29, б). Оно добавляется к колебанию генератора в момент t' достигающему при этом уровня, при котором происходит переброс в схеме. В связи с этим получают выходное колебание (рис. 10.29, в). Аналогичная ситуация наступает в моменты t''t''' и т. д., когда каждый из подводимых синхронизирующих импульсов переводит схему генератора из состояния запирания в состояние проводимости. В конечном результате получаем колебание с большей частотой, чем частота собственных несинхронизированных колебаний, и в точности равной частоте синхронизирующего колебания. При этом легко заметить, что для правильной синхронизации требуется соответствующая амплитуда импульсов, подводимых извне. Если это условие не выполняется, то сумма напряжений на генераторе может оказаться недостаточной для достижения уровня, при котором наступает переброс схемы. Синхронизирующее колебание может быть синусоидальным, прямоугольным и любим другим.

Приведенное описание процесса синхронизации относится к нестабильным генераторам. Для генераторов с одним или двумя устойчивыми состояниями непрерывные колебания возникают только под влиянием запускающих импульсов. Без этих импульсов непрерывные колебания не возникают.