Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Электроника?.. Нет ничего проще! - Эймишен Жан-Поль - Страница 91


91
Изменить размер шрифта:

Н. — Объяснение несколько туманно. Я предпочел бы конкретный пример.

Стабилизатор напряжения

Л. — Пожалуйста, посмотри схему, которую я подготовил для себя на рис. 163.

Рис. 163. Стабилизатор напряжения на транзисторах. Опорным напряжением служит часть напряжения, снимаемого с диода Зенера; транзистор Т2 усиливает напряжение ошибки; Т1 — мощный транзистор.

Напряжение U через резистор R3 подается на стабилитрон Д, на котором создается опорное напряжение.

Чтобы регулировать напряжение Е, мы с помощью потенциометра R4 снимем лишь часть опорного напряжения и подадим его на базу транзистора Т2. Часть стабилизируемого выходного напряжения Е через делитель напряжения R1 — R2, подается на эмиттер транзистора Т2. Если выходное напряжение Е становится слишком высоким или слишком низким, то часть его, подаваемая на эмиттер, будет соответственно отличаться от части спорного напряжения на базе Т2. Транзистор Т2 запирается или проводит. Его коллекторный ток, представляющий собой усиленное напряжение ошибки, подается на базу транзистора Т1. Связь между транзисторами очень проста, так как транзистор Т1 относится к типу р-n-р. Представь себе, что в силу каких-либо причин питаемая напряжением Е схема имеет тенденцию потреблять слишком много. Тогда напряжение Е снизится. Такое изменение произойдет и с потенциалом эмиттера транзистора Т2, что вызовет увеличение коллекторного тока транзистора Т2. Этот ток, проходя через базу транзистора Т1 значительно повысит ток в цепи коллектора транзистора Т1, что скомпенсирует первоначальное нарушение равновесия.

Н. — В этом стабилизаторе меня беспокоит то обстоятельство, что транзистор Т1 выдерживает всю разность напряжений U и Е и одновременно должен рассеивать большую мощность.

Л. — Мы должны взять мощный транзистор и установить его на хорошем радиаторе, способном рассеивать соответствующее количество тепла. Соблюдая необходимые меры, можно легко рассеивать мощность более 30 вт, что превышает возможности большинства ламп, которые ты до сих пор использовал.

Н. — В самом деле это превосходный стабилизатор напряжения, он весьма прост и в то же время обладает широкими возможностями. Вероятно, я в ближайшее время сделаю себе такой стабилизатор.

Л. — Ты получишь очень хорошие результаты, если примешь некоторые меры предосторожности. Не забывай, что стабилизатор не имеет защиты от короткого замыкания. Если ты замкнешь его выводы нагрузкой со слишком низким сопротивлением, транзистор Т1 может выйти из строя.

Н. — Я полагаю, что для предотвращения таких серьезных неприятностей достаточно поставить плавкий предохранитель.

Л. — Теперь, кажется, есть плавкий предохранитель, реагирующий достаточно быстро. Обычно же транзистор гибнет раньше предохранителя и тем самым спасает его. Если же ты хочешь надежно оградить себя от неприятностей, то нужно дополнить стабилизатор напряжения схемой на трех транзисторах, которая играет роль триггера и почти мгновенно (через несколько микросекунд) после перенапряжения отключает выходное напряжение.

Я не буду ее описывать, так как она отличается некоторой сложностью, но разобраться в ней совсем нетрудно. Все необходимые подробности ты можешь найти в полных схемах самой различной аппаратуры.

Сельсины

Н. — Я с некоторым недоверием отношусь к схемам, которые ты называешь сложными, но понятными, и тем не менее я думаю, что мне удастся с ними справиться. А теперь я хотел бы спросить тебя, что такое сельсин. Я часто слышал это слово и, в частности, встречал его в брошюре о радиолокаторе.

Л. — Сельсин — небольшая электрическая машина, очень похожая на электродвигатель, она служит для передачи угла поворота вала. В неподвижной части (статор) имеются три обмотки (рис. 164) B1, В2 и В3, расположенные под углом 120° друг к другу. Подвижная часть (ротор) имеет только одну обмотку, создающую магнитное поле, перпендикулярное оси ротора. Выводы этой обмотки соединены с двумя кольцами, к которым прижимаются две щетки.

Рис. 164. Пара сельсинов, используемых для передачи угла поворота вала с помощью трех напряжений различной амплитуды, наводимых ротором сельсина-датчика в трех обмотках статора сельсина-приемника.

Н. — Эта машина действительно немного похожа на электродвигатель, но я не вижу, как ее можно использовать для передачи положения.

Л. — Представь себе, что мы имеем два одинаковых сельсина. Я соединил, как это показано на рис. 164, все три обмотки статора первого с соответствующими обмотками второго…

Н. — А, нет! С этим я не согласен. Ты действительно соединил один вывод каждой обмотки первого сельсина с выводом соответствующей обмотки второго, но при этом накоротко замкнул вторые выводы всех трех обмоток первого сельсина и такую же операцию проделал со вторыми выводами обмоток второго сельсина. Я согласился бы с использованием одного общего провода для этих выводов, но при условии, если общий провод одного статора будет соединен с общим проводом другого статора.

Л. — В этом нет необходимости. Можно доказать, что напряжения в обмотках таковы, что их алгебраические суммы постоянно равны нулю. Поэтому нет надобности соединить между собой общие точки этих обмоток. А теперь подадим переменное напряжение в обмотку ротора первого сельсина. Во всех трех обмотках статора появятся наведенные напряжения, амплитуды которых зависят от положения ротора. Эти три напряжения передаются на три соответствующие обмотки второго сельсина и создают три вектора магнитного поля, которые, складываясь, дают одно результирующее, направленное точно так же, как породившее его магнитное поле первого сельсина.

Теперь можно двумя способами использовать второй сельсин. Мы можем подать в его ротор такое же напряжение, какое подается в ротор первого (обычно переменное напряжение 90—100 в с частотой 50 гц). Тогда в результате взаимодействия магнитного поля ротора второго сельсина с магнитными полями обмоток его статора ротор займет точно такое же положение, что и ротор первого сельсина.

Н. — Я понял, как работает система, но я не вижу разницы между управляющим и управляемым сельсинами.

Л. — Ты прав, что не видишь разницы — ее действительно нет. Передача может происходить в обоих направлениях. Все происходит так, как если бы для передачи движения с одного сельсина на другой использовали длинный гибкий вал. Если ты силой помешаешь вращению ротора второго сельсина, то почувствуешь соответствующее сопротивление на роторе первого.

Это система передачи положения, а не система автоматического регулирования. Обычно ею пользуются для перемещения вторым сельсином стрелки по шкале. Система очень удобна в тех случаях, когда при передаче угла необходимо обеспечить вращение по всему кругу без мертвого угла; ею удачно заменяют рассмотренные нами ранее системы на потенциометрах. Но картина будет совершенно другая, если я не подам тока в ротор второго сельсина и если я поверну его рукой. Как ты думаешь, что в этом случае произойдет?