Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Нестандартные задачи по математике в 4 классе - Левитас Герман Григорьевич - Страница 2
Задача 6. В двух кучах лежат камни. Двое играющих по очереди берут из любой кучи произвольное число камней. Выигрывает тот, кто возьмет последний камень. Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть?
Суть игры в том, чтобы уравнивать число камней в кучах. Если один игрок уравняет их, то другой обязательно нарушит это равенство, и т. д. Число камней все время убывает, и когда-нибудь игрок, уравнивающий число камней в кучах, доведет это равенство до 0–0, то есть выиграет.
Отметим, что очень желательно организовать эту игру. Камни для этого иметь необязательно. Можно просто написать на доске:
В первом случае надо начинать первым, забирая из второй кучи 8 камней (уравнивая кучи). Во втором случае надо предоставить первый ход противнику и каждым своим ходом уравнивать кучи.
Ответ: Если число камней в кучах одинаково, нужно предоставить первый ход партнеру, а если неодинаково, — начать игру, уравнивая число камней в кучах.
Задача 7. Шифром Юлия Цезаря по правилу «прибавь четыре» зашифруй фразу «век живи — век учись».
Как мы писали в аналогичной книге для третьеклассников, шифр Юлия Цезаря состоит в следующем. Алфавит пишется по кругу (за буквой я следует буква а), и каждая буква шифруемой фразы заменяется другой, следующей за ней (или перед ней) на определенное число букв. Шифр «прибавь четыре» означает, что каждую букву фразы «век живи — век учись» нужно заменять четвертой от нее буквой:
Ответ: Ёио кмём — ёио чымха.
Задача 8. Известно, что а + b = 7. Чему равно (а + 8) + b? Задачу можно изложить, например, так. У Вовы в двух карманах было 7 рублей. Он положил в левый карман еще 8 рублей. Сколько теперь у него денег в обоих карманах?
Ответ: 15.
Задача 9. Переложи одну спичку, чтобы равенство:
стало верным (это можно сделать двумя способами).
Надо воспользоваться тем, что в римской нумерации XI — это 11, а IX — это 9.
Ответ:
Задача 10. Друзья при прощании обменялись фотографиями. Фотографий понадобилось 20. Сколько было друзей?
Решение осуществим подбором. Если бы друзей было двое, то фотографий понадобилось бы всего две. Если бы их было трое, то понадобилось бы шесть фотографий, как это видно из рисунка:
Если друзей четверо, то из следующего рисунка видно, что фотографий нужно 12:
А если друзей пятеро, то фотографий нужно 20:
Можно рассуждать и более квалифицированно: каждый должен подарить на одну фотографию меньше, чем всего имеется друзей. Произведение двух последовательных чисел равно 20, если большее из чисел равно 5.
Ответ: 5.
11 - 20
Задача 11. У Кати вдвое больше пятерок, чем у Вовы, а у него на 6 пятерок меньше, чем у Кати. Сколько пятерок у Вовы?
Эту задачу можно решить арифметически, а можно с помощью уравнения. Если в классе есть дети, которые могут сразу решить эту задачу, нужно попросить их придумать, как объяснить решение остальным. Это относится и к арифметическому, и к алгебраическому решению.
Арифметическое решение подсказывается рисунком:
Сразу видно, что у Вовы 6 пятерок, а у Кати их 12.
Может показаться, что если задача решается так просто, то это значит, что не нужно ее решать другим способом. Однако, именно на легких задачах можно научиться новому методу решения. Данная задача очень для этого удобна. Мы вызываем к доске ученика и просим начать записывать уравнение. Что можно записать? Конечно, знак равенства:
=
Этим самым начат поиск следующих шагов: что чему равно в данной задаче? Может быть, что-то равно 6? Дописываем:
= 6.
Многие догадаются, что шести равна разность числа Катиных и числа Вовиных пятерок. И мы так и запишем:
(число Катиных пятерок) — (число Вовиных пятерок) = 6.
Получилось уравнение. Но в нем слишком много неизвестных — два. Хорошо бы выразить их через одно неизвестное х. Кстати, вспоминаем, что спрашивается в задаче. И приходим к мысли обозначить через х именно эту величину — число Вовиных пятерок. Тогда:
(число Катиных пятерок) — х = 6.
Теперь уже многие догадаются, что число Катиных пятерок равно 2 х, и уравнение примет вид:
2х — х = 6.
Ответ: 6.
Задача 12. Эту фигуру:
нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды.
Решение очевидно. Начинать обводку можно с любой точки.
Задача 13. Известно, что а + b = 12. Чему равно а + (b + 5)?
Надо попросить детей придумать текст задачи на эту тему (см., например, задачу 8).
Ответ: 17.
Задача 14. У Саши втрое больше марок с портретами русских писателей, чем у Пети, а у Пети на 4 таких марки меньше, чем у Саши. Сколько таких марок у Пети?
Арифметическое решение подсказывается рисунком:
Сразу видно, что у Саши 6 таких марок, а у Пети их 2.
Алгебраическое решение начинаем с записи знака равенства:
=
Но что чему равно в данной задаче? Может быть, что-то равно 4? Дописываем:
= 4.
Многие догадаются, что четырем равна разность числа Сашиных и числа Петиных марок:
(число Сашиных марок) — (число Петиных марок) = 4.
Получилось уравнение с двумя неизвестными. Выразим эти неизвестные через один и тот же х. Обозначим через х ту величину, о которой спрашивается в задаче: х — число Петиных марок. Получается, что
(число Сашиных марок) — х = 4.
Теперь уже многие догадаются, что число Сашиных марок равно Зх, и уравнение примет вид:
3х — х = 6.
Ответ: 3.
Задача 15. Эту фигуру:
нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды.
Решение очевидно. Начинать обводку можно с любой точки.
Задача 16. Из надписи 1234567891011121314151617181920 вычеркни 21 цифру, не меняя порядка цифр, чтобы оставшееся число было а) возможно большим; б) возможно маленьким.
Всего в надписи 31 цифра. Нужно оставить из них 31 — 21 = 10 цифр.
а) Чтобы число было наибольшим, нужно сделать его старшие цифры наибольшими. Первой сделаем цифру 9, вычеркнув первые восемь цифр: 91011121314151617181920. Сделать второй цифрой 9 нам не удастся, так как тогда останется такое число: 9920, а нам нужно число десятизначное. Не удастся сделать второй цифрой и 8, и 7, а вот 6 можно сделать второй цифрой, вычеркнув 13 цифр. Остальные цифры останутся невычеркнутыми.
- Предыдущая
- 2/16
- Следующая