Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Коллектив авторов - Страница 19
Свойство, относящееся к предложению, называют синтаксическим, если оно зависит только от самих символов, независимо от их значения (например, количество букв в предложении).
Оно является семантическим, если зависит от значения (например, утверждение об истинности или ложности предложения). Синтаксические свойства проверяются механически; семантические — нет.
Итак, Курт Гёдель представил доказательство первой теоремы о неполноте таким образом, что всем было очевидно: ее можно проверить с помощью компьютера. Он изложил свое высказывание и каждый шаг доказательства теоремы, апеллируя только к синтаксическим понятиям.
В предыдущей главе мы сформулировали первую теорему Гёделя о неполноте (теорему Гёделя) следующим образом.
Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые получены на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом.
В этой формулировке теоремы появляется семантическое понятие истинности. Поэтому Гёдель представил его в статье 1931 года не в такой форме. Формулировка Гёделя аналогична, но записана с помощью только синтаксических понятий.
Определим синтаксические понятия, которыми пользовался Гёдель, и переформулируем первую теорему о неполноте.
Для начала скажем, что "являться доказательством, соответствующим требованиям программы Гильберта" — это синтаксическое свойство, поскольку его можно проверить с помощью компьютера посимвольно. Следовательно, идея "доказуемого высказывания" также синтаксическая, поскольку высказывание Р доказуемо, если существует доказательство, заканчивающееся этим высказыванием.
Даже понятие "высказывание" может быть определено синтаксически. Для начала, в аристотелевском определении говорится, что высказывание — это выражение, которому можно назначить значение истинности (истинно или ложно). Так,
"х — простое число"
не является высказыванием, поскольку его значение истинности зависит от того, каково х. И напротив, из двух высказываний:
"Существует некоторое х} являющееся простым числом", "Для любого х справедливо, что х — простое число"
первое истинное, а второе ложное.
Итак, это семантическое понятие может быть сформулировано синтаксически: высказывание — это выражение, не имеющее переменных (букв х, у, z), которые могут быть свободно заменены числами. То есть это выражение, в котором либо нет переменных, как в случае "4 = 2 + 2", либо все они сопровождаются выражениями типа "для любого х справедливо, что..." или "существует некоторое х, которое...", как это происходит в предыдущих двух примерах. Является выражение высказыванием или нет — это условие можно проверить посимвольно, при этом нет необходимости рассматривать значение выражений. Итак, "высказывание" и "доказуемое высказывание" — два синтаксических понятия, которые Гёдель мог использовать при формулировании своей теоремы.
В своей работе Principia Mathematica ("Принципы математики") Бертран Рассел утверждал, что все известные парадоксы всегда порождаются самореференцией. То есть они возникают из-за того, что в высказываниях прямо или косвенно говорится о них самих. Способ избежать любого парадокса, говорил Рассел, — исключить из языка любой намек на самореференцию. В семантическом самореферентном высказывании говорится о семантической характеристике как таковой. Таков случай "это предложение ложно", то есть утверждение, вызывающее парадокс лжеца. В синтаксической самореференции, наоборот, в самореферентном высказывании говорится о синтаксической характеристике как таковой. Например: "в этом предложении пять слов". Семантическая самореференция, как говорил Рассел, всегда опасна и подводит нас к границе парадокса. Синтаксическая самореференция, наоборот, не несет в себе никакого риска. Почему? Потому что синтаксическая самореференция иллюзорна; кажется, что в предложении говорится о нем самом, но на самом деле здесь раздвоение: в значении предложения говорится не о нем самом, а о символах, которые его образуют. Когда мы говорим: "в этом предложении пять слов", мы имеем в виду:
"В предложении "в этом предложении пять слов" содержится пять слов".
Отрицание этого:
"В предложении "в этом предложении пять слов" содержится не пять слов".
Мы говорим о символах, а не о смысле, так что нет риска получить парадокс. В высказывании Гёделя G утверждается, что оно недоказуемо, то есть речь идет о синтаксической характеристике себя самого. Так как самореференция синтаксическая, рассуждения на основе G никогда не приведут нас к парадоксу.
Другое важное понятие для синтаксической формулировки первой теоремы о неполноте — это понятие непротиворечивости. Множество аксиом является непротиворечивым, если не существует ни одного высказывания Р такого, чтобы Р и не-Р были одновременно доказуемы на основе этих аксиом (с синтаксической точки зрения не-Р получается простым размещением слева от Р символа, обозначающего отрицание).
Хотя далее мы увидим, какая связь существует между тем, чтобы быть "непротиворечивым" и быть "истинным", очевидно, что непротиворечивость — это чисто синтаксическое понятие (поскольку зависит от синтаксического понятия доказуемости).
Если все аксиомы — истинные высказывания, то множество аксиом непротиворечиво. Действительно, из истинных предпосылок получаются только истинные выводы. Тогда только одно из высказываний Р и не-Р ложно; следовательно, если все аксиомы истинны, невозможно, чтобы Р и не-Р были доказуемы одновременно (ложное не будет доказуемым).
Значит ли это, что выражение "непротиворечивое множество аксиом" равносильно "множеству истинных аксиом"? Это тонкий вопрос, который заслуживает тщательного анализа.
Начнем с вопроса, является ли высказывание "2 — простое число" истинным. Почти любой человек сразу же скажет, что его истинность очевидна. Однако более правильным ответом будет "когда как". Это зависит от Вселенной, в контексте которой мы сейчас работаем. Если подразумевается, что речь идет о натуральных числах, то высказывание действительно истинно, но в другом контексте оно может быть ложным.
Вспомним, что число (отличное от единицы) является простым, если делится только на единицу и само на себя. Можно выразить это понятие по-другому: 2 — простое число, поскольку единственный способ представить его в виде произведения двух чисел тривиален: 2 = 2 x 1 (запись 2 = 1 x 2 считается совпадающей с ней, так как в ней используются те же числа). А вот число 15 не является простым, поскольку его можно представить, помимо тривиального способа 15 = 1 х 15, также как 15 = = 3 x 5.
Но точно ли единственный способ записать число 2 в виде произведения — это 2 = 2 х 1? В мире натуральных чисел — да. Но существуют и другие миры.
Расширим наш числовой мир и включим в него все числа, которые получаются умножением √2 на натуральное число (и на нуль), а затем прибавлением другого натурального числа (или нуля). Например, этот мир содержит числа 3 + 4 √2 или 7 √2. Также в нем содержится само число √2, которое записывается как 0+1 √2, и все натуральные числа, которые могут быть записаны как:
1 = 1 + 0 √2
- Предыдущая
- 19/31
- Следующая