Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Яблони на Марсе - Чирков Юрий Георгиевич - Страница 20
Варбург предложил и очень удобный объект для исследований, одноклеточную водоросль — хлореллу (она придает изумрудный цвет тихим заводям и лужам), которая столь прославилась в более поздние годы. Замечательна хлорелла тем, что при размножении может делиться не на две, а сразу на 4, 8, 16, 32 и даже 64 части! Ее биомасса нарастает столь же быстро, как снежная лавина в горах…
Опыты, которые вели сотрудники Варбурга, были по замыслу очень просты. Зная интенсивность падающего на хлореллу света и определяя количество выделяющегося при фотосинтезе кислорода, можно оценить квантовый расход. Он оказался равным четырем: четыре кванта света на каждую выделяющуюся молекулу кислорода.
Эффективность фотосинтеза оказалась очень высокой: 75 процентов! Аналогов этому в технике в начале нашего века не существовало. Тепловые электростанции той поры преобразовывали химическую энергию угля с КПД не более 10 процентов. Да и ныне КПД лучших тепловых электростанций не превышает 40 процентов.
Около 15 лет никто не сомневался в результатах, полученных Варбургом. Однако в 1939 году другие исследователи, в основном американские, нашли для квантового расхода величины, близкие к восьми. Научный интерес к проблеме резко возрос.
Критикующие Варбурга исследователи, их идейным вождем стал американский ученый Роберт Эмерсон, считали его выводы артефактом, методической ошибкой. Однако в ответ на каждое критическое замечание Варбург и его сотрудники ставили новые опыты, свободные от недостатков прежних экспериментов. И — удивительно! — всякий раз получались значения квантового расхода, близкие к четырем.
Четыре или восемь? И сегодня нет однозначного ответа. Измеряемые эффекты оказались очень тонкими. Поэтому в научной литературе можно встретить величины квантового расхода самые разные, от 3 до 12.
— Насколько важна эта проблема? — спросил я у Белла.
— Ну, прежде всего, мне кажется, — отвечал он, — здесь уместно будет вспомнить слова Тимирязева, который писал о том, что каждый луч солнца, не уловленный зеленой поверхностью поля, луга или леса, — богатство, потерянное навсегда, что это «кусок хлеба, вырванный изо рта отдаленного потомка».
Растения все еще остаются для человека высоким образцом, — продолжал ученый. — И знать, что обещает самое лучшее и совершенное в природе, крайне важно. Во всем мире сейчас начинается настоящий солнечный бум. Причины тут коренятся в энергетических и экологических трудностях. Многие ученые, инженеры, конструкторы и изобретатели строят различные варианты искусственных листьев, которые должны использовать даровую энергию Солнца. Поэтому проблема квантового расхода остается актуальной: нам надо твердо знать, на что мы тут можем надеяться…
Вот теперь, познакомившись с понятием квантового расхода, уже можно оценить потенциальный КПД растений. Приведем простые соображения, они принадлежат академику Александру Абрамовичу Красновскому.
Чтобы связать между собой молекулы воды и углекислого газа и образовать молекулу глюкозы, достаточно трех квантов красного света. Растения же реально поглощают больше: от 8 до 12. Возьмем среднюю величину — 10 квантов. Таким образом, они действуют с КПД примерно 30 процентов.
Но растения способны использовать далеко не всякое излучение. Ультрафиолет, хотя здесь энергия лучей наибольшая, для них недоступен. Не по вкусу растениям и инфракрасная область спектра. Инфракрасные лучи очень бедны энергией, их утилизируют лишь некоторые виды фотосинтезирующих бактерий.
Итог: лишь половина доступной для растений энергии солнечного излучения, та, что лежит в видимой области солнечного спектра, является для растений фотосинтетически полезной радиацией. А посему и получается: максимально возможный КПД растений при фотосинтезе составляет примерно 30 : 2 = 15 процентов.
Дальше рассказ хотелось бы вести столь же бесхитростно, как бесхитростно, незатейливо рисуют маленькие дети… Вот паровоз с трубой, из трубы валит черный дым. А рядом оранжевый цветок — головка на тонком стебле с зелеными ручками-листиками.
Если поглядеть на эту картинку глазами взрослого, можно отметить классификационное свойство, включающее в некое единство и цветок, и паровоз. Ведь и то, и другое в конце концов — энергетические машины. Паровоз преобразует в движение запасенную в угле химическую энергию. А растение превращает энергию световых квантов в химическую энергию продуктов фотосинтеза.
Максимально возможный КПД тепловой машины определил, как известно, французский физик Сади Карно (1796–1832). Еще в 1824 году. Его расчеты покоились на законах тогда только зарождавшейся науки — термодинамики. Сейчас наши познания в ней обширны. Так нельзя ли попытаться приложить те же законы к растениям? Ведь добились же ученые и инженеры того, что КПД современных тепловозов в несколько раз выше, чем у паровоза!
Подобные попытки делаются давно. О выводах, которые следуют, если приложить законы термодинамики к биологическим объектам, говорили и писали, в частности, еще Климент Аркадьевич Тимирязев, Владимир Иванович Вернадский (1863–1945) и другие наши ученые. В Днепропетровском химико-технологическом институте имени Дзержинского новое научное направление — термодинамику растений — стал развивать доктор химических наук, профессор Октавиан Станиславович Ксенжек.
— Располагаясь на границе между почвой и атмосферой (борода корней в земле, шевелюра листьев в воздухе), растения обеспечивают интенсивный обмен веществом между ними, — рассказывал Ксенжек. — Все эти процессы должна рассматривать термодинамика растений. Надо детально разобраться в структуре энергетических затрат отдельного растения.
Эти слова Ксенжека свидетельствуют: ученые сейчас хотят понять, куда теряются кванты света и нельзя ли уменьшить величину этих потерь. Ведь тогда, очевидно, максимально возможный КПД растений значительно возрастет. А вместе с ним поднимутся реальные урожаи.
Если же заглянуть еще дальше, то, учитывая тенденцию к возрастанию энергетической цены единицы урожая при интенсификации сельскохозяйственного производства, нужно будет термодинамическими методами рассмотреть и общие принципы, определяющие условия энергообмена между биологической и технической подсистемами сельского хозяйства. Таким образом можно будет оценить уровни неизбежных затрат энергии и, сравнивая их с реальными, судить о степени совершенства различных процессов сельскохозяйственного производства с точки зрения энергетики.
Добавим к этому: кто самый крупный потребитель энергии? Не металлургия, не транспорт, не химическая промышленность, а… сельское хозяйство! За несколько летних месяцев растительный покров — эта гигантская энергопреобразующая машина, распластавшаяся по поверхности земли, получает от солнца в тысячу раз больше энергии, чем ее вырабатывают за целый год все электростанции страны.
Оперируя первым и вторым началами термодинамики, удается дать ответ не на один «наивный» вопрос. Скажем, отчего одиночная клетка микроскопически мала? Да потому что количество световой энергии, поглощаемой клеткой, пропорционально квадрату ее радиуса, а диффузионный поток необходимых клетке веществ этому радиусу обратно пропорционален. И с увеличением размера клетки быстро нарастает диспропорция между обилием энергии и скудостью материального баланса, оттого-то клетка и обречена быть столь ничтожно малой.
Иной энергетический расклад существует для многоклеточных организмов, растений, например. Количество энергии, поступающей к растению, приближенно пропорционально квадрату его размеров, а объем зон питания — корни, листва — даже пропорционален кубу размеров. И все же растений-гигантов мы не наблюдаем. Отчего? Дело в том, что при достаточно больших размерах транспортная система растения становится лимитирующим звеном: энергозатраты на поддержание работы транспортной системы — подача в растение минеральных солей, воды, отвод продуктов — растут пропорционально третьей степени размера растения, то есть возрастают быстрее, чем увеличиваются его энергоресурсы.
- Предыдущая
- 20/67
- Следующая