Выбери любимый жанр

Вы читаете книгу


Мир вокруг нас

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Мир вокруг нас - "Этэрнус" - Страница 21


21
Изменить размер шрифта:

Рис. 31

В ядре водорода-5 — можно выделить сердцевину (т. н. кор), представляющий собой ядро трития, и остальную часть этого ядра — два слабо связанных с сердцевиной, нейтрона (т. е. связанных косвенно, через нейтроны сердцевины, обладающие смещённой кварковой плотностью). Слабосвязанные (внешние) нейтроны, при этом, также связаны друг с другом, — спарены, образуя т. н. динейтрон (где спины нейтронов — взаимно противоположны, и каждый из нейтронов пары — несколько притягивает другой нейтрон, за счёт собственной смещённой кварковой плотности). Направления сил (= смещений кварковой плотности к протону) — показаны на рис. 32. (В реальности, смещается кварковая плотность также протона к нейтронам (из обоюдности притяжения протона и нейтрона), но для удобства, её можно не учитывать, кроме объяснения, например, ядра гелия-3, в котором один из протонов — связан с нейтроном косвенно).

Рис. 32. Водород-5, вид сбоку (схематично)

Ядро водорода-5 — имеет несколько большее время жизни, чем ядро водорода-4, см. табл. 1. Причина кроется в том, что все базовые положения для нейтронов (т. е. уровень минимальной энергии), в этом ядре — занят нейтронами кора (т. е. трития), и в эти положения — не могут перейти остальные (внешние) нейтроны (в отличие от ядра водорода-4). Кроме того, можно сказать, что конфигурация ядра водорода-5 несколько стабилизируется выгодой спаренных нейтронов.

Далее: Структуру следующего изотопа, водорода-6 — см. на рис. 33. В строении водорода-6, видна структура, т. н. тринейтрон, из-за которого это ядро имеет спин 2. Почему такая конфигурация ядра является выгодной, и реализуется вместо представленной на рис. 34? Дело в том, что даже при небольшом сдвиге тринейтрона (из-за квантовой неопределённости положения), в нижней половине ядра — образуется резкая асимметрия, т. е. дырка (разрывающая замыкание движения в ядре как целом + мешающая стремлению ядра к замкнутой геометрической фигуре), см. рис. 35. Сдвиг тринейтрона т. о. — оказывается запрещённым, в то время как на рис. 34, два динейтрона, имея одинаковую массу — могут отходить сочетанно (в резонансе друг с другом), и такая дырка не образуется (т. е. отход динейтронов — не запрещён, а значит, они могут отдаляться, согласно квантовой неопределённости, более далеко, и т. о. будут связаны слабее, что энергетически невыгодно). Поэтому реализуется конфигурация именно с тринейтроном (рис. 33), а её выгода — имеет квантовую природу.

Рис. 33

Рис. 34

Рис. 35

У этого механизма — есть и второй компонент: выделим в ядре водорода-6 — участок, соответствующий ядру дейтерия (образующему в этом ядре сердцевину (кор)). Нейтрон в этом ядре дейтерия (коре), находящемся в составе водорода-6 — тоже может, благодаря квантовой неопределённости координаты, отдаляться от протона. В случае наличия тринейтрона, отдаление данного нейтрона — подавлено, т. к. отдаляясь, он сдвигает тринейтрон, не сдвигая другой нижний нейтрон, а значит, образуется запрещённая дырка «внизу» ядра, см. рис. 36. Если бы вместо тринейтрона, было два динейтрона (рис. 34), отходящий нейтрон дейтерия — симметрично сдвигал бы их (а значит, оба нижних нейтрона), и дырка не образовывалась бы. В этом случае, все нейтроны в ядре оказались бы связаны с протоном слабее, что энергетически невыгодно. Поэтому опять же, реализуется конфигурация именно с тринейтроном (имеющая спин 2, = конфигурация на рис. 33).

Рис. 36

Последним изотопом водорода — является водород-7, в целом, аналогичный водороду-5, но имеющий 4 слабосвязанных, внешних нейтрона, в виде двух динейтронов, см. рис. 37. Как видно, в водороде-7 — заполнены все (наиболее выгодные) места для связи нейтронов. Отсутствие изотопов водорода-8 и -9 — легко объясняется тем, что притягивающая сила смещённой кварковой плотности, вызываемая одним протоном — оказывается слишком мала, чтобы связать ещё нейтроны (учитывая, что нейтроны далее могут быть присоединены, как видно из геометрии — уже не просто через другие нейтроны, но через слабосвязанные нейтроны, т. е. которые уже и сами слабо связаны).

Рис. 37

Итак, число изотопов водорода — объясняется их наглядным, геометрическим строением, которое выясняется лишь на постнеклассическом этапе.

Конфигурации нейтронизбыточных изотопов гелия

У гелия, как уже говорилось, известно восемь изотопов, из которых, два первых — мы уже рассматривали (стабильные гелий-3 и гелий-4). Теперь рассмотрим короткоживущие, нестабильные, а именно — нейтроноизбыточные изотопы.

Спин первого из них, гелия-5 — равен 3/2, и т. о. сильно отличается от спина соседних изотопов, гелия-4 и гелия-6, см. табл. 2. Это скачкообразное изменение спина, между соседними изотопами (гелием-4, -5 и -6) — легко и наглядно объясняется геометрией ядер, из которой видно, почему выгодны конфигурации именно с такими спинами — см. рис. 38. В целом, ядро гелия-5, как видно, устроено аналогично ядру водорода-4.

Таблица 2 [8]

Изотопы гелия

Рис. 38

Следующий изотоп, гелий-6 — в целом, аналогичен, по строению, водороду-5, см. рис. 38. Согласно экспериментальным данным, ядро гелия-6 — имеет аномально высокий эффективный радиус, т. к. обладает гало из двух слабо связанных с остальным ядром (т. е. сердцевиной), нейтронов [9]. Отныне, можно наглядно видеть причину этого: внешние нейтроны, в ядре гелия-6 — связаны с протонами лишь косвенно, через другие нейтроны, а значит, связаны слабо, и поэтому могут (благодаря всё той же квантовой неопределённости), значительно отдаляться от сердцевины, или кора ядра. Кроме того, нейтроны — развёрнуты наружу (что также сильно облегчает взаимодействие с ними других ядер и частиц, т. е. увеличивает измеряемый эффективный радиус ядра).

Следующий изотоп, гелий-7 — показан на рис. 39. По структуре, это ядро (изотоп), как видно — является аналогом водорода-6. В своей структуре, гелий-7 имеет тринейтрон, выгода которого — аналогична описанной для водорода-6.

Рис. 39

Далее, рассмотрим строение ядра изотопа гелий-8 — см. рис. 40. В строении ядра гелия-8, как известно [10], и как видно на рис. — имеется гало из четырёх нейтронов. Эти четыре слабосвязанных нейтрона — прикреплены к альфа-частице (кору, нуклоны в котором — сильно связаны друг с другом). Гелий-8, в целом — также аналогичен соответствующему изотопу водорода, — водороду-7.