Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - Коллектив авторов - Страница 40


40
Изменить размер шрифта:

От руды к металлу

Гафний входит в состав всех минералов циркония, но только циркон ZrSiO4, в котором 0,5–2% атомов циркония замещено атомами гафния, используется промышленностью как гафниевое сырье. Циркон очень прочный в химическом отношении минерал: нет ни одного реагента, могущего разложить его при температуре до 100°C.

Наиболее распространенный технологический процесс получения гафния состоит в следующем.

Измельченный циркон смешивают с графитом (или другим углеродсодержащим материалом) и нагревают до 1800°C в дуговой плавильной печи без доступа воздуха. При этом цирконий и гафний связываются углеродом, образуя карбиды ZrC и HfC, а кремний улетучивается в виде моноокиси SiO. Если ту же смесь нагревать в присутствии воздуха, продукты реакции наряду с углеродом будут содержать азот и называться карбонитридами.

Карбиды и карбонитриды охлаждают, разбивают на куски и загружают в шахтную печь. Там при температуре около 500°C эти продукты реагируют с газообразным хлором — образуются тетрахлориды циркония и гафния.

Цирконий и гафний разделяют, используя минимальные различия в свойствах соединений этих элементов. Промышленное применение пока нашли два метода: экстракционный, основанный на разной растворимости соединений циркония и гафния в метил изобутил кетоне или трибутилфосфате, и метод дробной кристаллизации комплексных фторидов, основанный на различной растворимости K2[HfF6] и K2[ZiF6] в воде.

Немного подробнее расскажем о химически более интересном первом методе.

Смесь тетрахлоридов растворяют в воде и в раствор добавляют роданистый аммоний NH4CNS. Этот раствор затем смешивают с метилизобутилкетоном (МИБК), насыщенным роданистоводородной кислотой HCNS. При таких условиях соединения гафния растворяются в МИБК лучше, чем соответствующие соединения циркония, и гафний концентрируется в органической фазе. Процесс многократно повторяют и получают водный раствор соединений циркония и раствор соли гафния в органическом растворителе. Но и в последнем есть примесь циркония. Чтобы извлечь его, органическую фазу промывают раствором HCl, а затем экстрагируют гафний раствором H2SO4. Из сернокислого раствора гафний осаждают в виде гидроокиси, которую прокаливанием переводят в двуокись гафния. Последнюю снова хлорируют и получают тетрахлорид гафния, который еще раз очищают возгонкой.

Из очищенного тетрахлорида металлический гафний восстанавливают магнием или сплавом магния с натрием. Процесс идет в герметически закрытой печи в атмосфере гелия. Полученный таким образом губчатый гафний переплавляют в слитки. Это делается в вакуумных электродуговых или электронно-лучевых печах.

Для приготовления гафния наиболее высокой чистоты обычный металл превращают в тетраиодид, который затем разлагают при высокой температуре.

Весь получаемый в наше время гафний — это попутный продукт производства реакторного циркония. Если бы пришлось получать гафний в самостоятельном производстве, он был бы в несколько раз дороже. А он и так принадлежит к числу самых дорогих металлов.

Сейчас больше 90% гафния потребляет ядерная энергетика. Поэтому, когда говорят о возможностях использования гафния в других областях, обычно добавляют эпитет «потенциальные». Скорее всего такое положение сохранится надолго, ибо ядерная энергетика развивается очень быстро, быстрее подавляющего большинства отраслей… Видимо, так уж ему суждено — быть «атомным» металлом. И это элементу, у которого из шести природных изотопов радиоактивен только один!

ДВАЖДЫ УДИВИТЕЛЬНЫЙ МИНЕРАЛ. Минерал тортвейтит Sc2Si2O7 — единственный собственный минерал редкого элемента скандия. Но тортвейтит интересен и другим: это единственный минерал, в котором гафния больше, чем циркония. Ионы этих металлов частично замещают скандии в кристаллической решетке тортвентита. Совершенно необычное соотношение между гафнием и цирконием объясняется тем, что значения ионных радиусов Hf4+ и Sc3+ ближе, чем Zr4+ и Sc3+. Поэтому ион гафния «внедряется» в кристалл тортвентита легче, чем ион циркония.

ГЕОГРАФИЯ ЦИРКОНА. Содержание двуокиси гафния в цирконах обычно составляет 0,5–2,0%, но в цирконах из Нигерии оно часто превышает 5%. Поэтому нигерийские цирконовые концентраты в три раза дороже рядовых. Цирконом богаты прибрежные отмели и многочисленные наносные отложения в Австралии, США, Индии и Бразилии.

В Советском Союзе месторождения циркона есть на Украине и на Урале.

НЕИЗМЕННАЯ ПРОЧНОСТЬ. Сплав тантала с 8% вольфрама и 2% гафния имеет высокую прочность и при температуре, близкой к абсолютному нулю, и при 2000°C. Он хорошо обрабатывается и сваривается. Сплав предназначен для изготовления камер сгорания ракетных двигателей, каркаса и обшивки ракет.

ЗАМЕНИТЕЛЬ СЕРЕБРА. Сплав циркония с 8,5–20% гафния по внешнему виду и изнашиваемости не уступает серебру, при этом он примерно вдвое дешевле последнего. Предполагалось использовать этот сплав для чеканки монет.

ОДНА ПЯТИДЕСЯТАЯ. Поскольку гафний извлекают попутно при получении реакторного циркония, его производство растет пропорционально выпуску последнего, причем на 50 кг циркония получают приблизительно 1 кг гафния. Пользуясь этим расчетом и обрывочными сведениями о производстве циркония в отдельных странах и регионах, можно сделать вывод, что мировое производство гафния сейчас измеряется десятками тонн в год. По прогнозам Горного бюро США, опубликованным в 1975 г., потребность этой страны в гафнии на рубеже XX–XXI вв. составит минимум 36 и максимум 90 тонн.

ОСОБАЯ ТВЕРДОСТЬ. Карбид гафния отличается наивысшей из всех двойных соединений температурой плавления — без малого 4000°C, на 500°C выше, чем у самого тугоплавкого из металлов.

Этому соединению свойственна и высокая твердость: добавки карбида гафния улучшают эксплуатационные качества твердых сплавов на основе карбидов вольфрама и молибдена. Подобными свойствами обладает и нитрид элемента № 72. В Англии в конце 70-х гг. смогли в 5 раз продлить срок действия карбидного режущего инструмента с помощью покрытия из нитрида гафния толщиной всего в 2 мкм.

Тантал

Фригийского царя Тантала боги наказали за неоправданную жестокость. Они обрекли Тантала на вечные муки жажды, голода и страха. С тех пор стоит он в преисподней по горло в прозрачной воде. Под тяжестью созревших плодов склоняются к нему ветви деревьев. Когда томимый жаждой Тантал пытается напиться, вода уходит вниз. Стоит ему протянуть руку к сочным плодам, ветер поднимает ветвь, и обессилевший от голода грешник не может ее достать. А прямо над его головой нависла скала, грозя в любой миг обрушиться.

Так мифы Древней Греции повествуют о муках Тантала. Должно быть, не раз шведскому химику Экебергу пришлось вспомнить о танталовых муках, когда он безуспешно пытался растворить в кислотах «землю», открытую им в 1802 г., и выделить из нее новый элемент. Сколько раз, казалось, ученый был близок к цели, но выделить новый металл в чистом виде ему так и не удалось. Отсюда — «мученическое» название элемента № 73.

Споры и заблуждения

Спустя некоторое время выяснилось, что у тантала есть двойник, который появился на свет годом раньше. Этот двойник — элемент № 41, открытый в 1801 г. и первоначально названный колумбием. Позже его переименовали в ниобий. Сходство ниобия и тантала ввело в заблуждение химиков. После долгих споров они пришли к выводу, что тантал и колумбий — одно и то же.

Поначалу такого же мнения придерживался и известнейший химик того времени Йенс Якоб Берцелиус, однако в дальнейшем он усомнился в этом. В письме к своему ученику немецкому химику Фридриху Вёлеру Берцелиус писал: