Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов - Страница 9


9
Изменить размер шрифта:

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена — частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

ИЗОТОПЫ ГЕЛИЯ, В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 — 2,4∙10-21 секунды, гелия-6 — 0,83 секунды, гелия-8 — 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые получен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

ПОСЛЕДНИЙ ТВЕРДЫЙ ГАЗ. В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше — 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый — в 1926 г.

ГЕЛИЕВЫЙ ВОЗДУХ. Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких — быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни — довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы… В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную.

НАШ ГЕЛИЙ. В 1980 г. группа ученых и специалистов во главе с И. Л. Андреевым была удостоена Государственной премии за создание и внедрение технологии получения гелиевых концентратов из сравнительно бедных гелиеносных газов. На Оренбургском газовом месторождении построен гелиевый завод, ставший главным нашим поставщиком «солнечного газа» для нужд разных отраслей.

ГЕЛИЕВЫЙ КОМПЛЕКС. В 1978 г. академику В. А. Легасову с сотрудниками при распаде ядер трития, включенных в молекулу аминокислоты глицина, удалось зарегистрировать парамагнитный гелийсодержащий комплекс, в котором наблюдалось сверхтонкое взаимодействие ядра гелия-3 с неспаренным электроном. Это пока наибольшее достижение в химии гелия.

Литий

Элемент № 3, названный литием (от греческого λιτος — камень), открыт в 1817 г.

Шведский химик И.А. Арфведсон, ученик знаменитого Берцелиуса, анализировал минерал, найденный в железном руднике Уто. Он быстро установил, что этот минерал — типичный алюмосиликат, и выяснил, сколько в нем кремния, алюминия и кислорода — на долю этих трех распространеннейших элементов приходилось 96% веса минерала.

Теперь оставалось выяснить химическую природу веществ, составляющих оставшиеся 4%. Эти вещества, будучи отделенными от Si, Al и O2 и растворенными в воде, придавали раствору щелочные свойства. На этом основании Арфведсон предположил, что в минерале есть некий щелочной металл. Одна из солей этого металла растворялась в воде в шесть раз лучше, чем аналогичные соли калия и натрия. А поскольку в то время были известны лишь два щелочных металла, Арфведсон решил, что открыл новый элемент, подобный натрию и калию.

С виду минерал, в котором нашли новый элемент, был камень как камень, и потому Берцелиус предложил Арфведсону назвать новый элемент литием. Тот, видимо, не стал спорить, ибо это название сохранилось до наших дней. В большинстве европейских языков, как и в латыни, элемент № 3 называется Lithium.

На этом история элемента № 3 не заканчивается. Это очень своеобразный элемент, и не только потому, что литий — первый среди металлов по легкости и удельной теплоемкости, а также по положению в ряду напряжений металлов. Говорить о том, что история лития продолжается, можно хотя бы потому, что некоторые соединения лития, да и сам металл в последнее время приобрели исключительную важность для судеб всего мира.

Поэтому слово «история» в подзаголовках этой статьи нам кажется оправданным.

Иоганн Август Арфведсон (1792—1841) — шведский химик, первооткрыватель лития. В 1817 г., занимаясь анализом минерала петалита LiAl(Si4O10), ученый обнаружил присутствие в минерале «огнепостоянной щелочи до с их пор неизвестной природы». Берцелиус предложил назвать ее литионом, поскольку это была первая щелочь, найденная в «царстве минералов». Отсюда и произошло название литий

Древнейшая история

Когда-то давным-давно, в доисторические времена, происходил синтез элементов Вселенной. Несколько позже, но тоже в неопределенно далеком прошлом шли процессы формирования нашей планеты. На этой стадии литий проник более чем в 150 минералов, из них около 30 стали собственными минералами лития. Промышленное значение приобрели только пять: сподумен LiAl[Si2O6], лепидолит KLi1.5Al1.5[Si3AlO10] (F, ОН)2, петалит — минерал, в котором литий обнаружен впервые, LiAl[Si4O10], амблигонит LiAl[PO4] (F, ОН) и циннвальдит KLi (Fe, Mg)Al ∙ [Si3Al10] (F, ОН)2.

Географически промышленные запасы элемента № 3 распределились довольно равномерно: промышленные месторождения минералов лития есть на всех континентах. Важнейшие из них находятся в Канаде, США, СССР, Испании, Швеции, Бразилии, Австралии, а также в странах Южной Африки.

Древняя история

Слово «древняя» здесь употребляется весьма условно — речь пойдет о временах, не столь отдаленных.

Человечество знакомо с литием чуть больше полутора веков, и этот раздел нашего рассказа охватит годы с 1817 по 1920. Это время познания лития как химического индивидуума, время получения и исследования его многих соединений и не очень широкого применения некоторых из них.