Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Расследование о генах, эволюции, сознании(СИ) - Назаренко Юрий Сергеевич - Страница 2


2
Изменить размер шрифта:

Это можно довольно легко доказать математически. Понятно, что вероятность выпадения "решки" при бросании монеты равна одной второй, а вероятность выпадения "шестерки" при бросании кубика равна одной шестой. А если у нас есть рулетка со ста лунками, то вероятность попадания шарика в выбранную наугад лунку будет одной сотой. Предположим, что мы занумеровали все лунки и сто шариков, а затем по очереди бросаем шарики, стремясь упорядочить сто шариков (элементов) так, чтобы номера всех лунок совпали с номерами, попавших в них шариков. Если лунки глубокие (как в бильярде), и в каждую лунку может провалиться несколько шариков (в принципе даже все сто), то чтобы получить полную вероятность размещения всех шариков в соответствии со своими номерами, нужно просто перемножить вероятности для каждого шарика. Тогда получаем число, равное одной сотой в степени сто. То есть, чтобы наш вариант случайного упорядоченного размещения ста шариков (элементов) реализовался нужно сделать десять в степени двести попыток, это число записывается как единичка с двумя сотнями нулей после нее. Под попыткой подразумевается вбрасывание на рулетку всех ста шариков. Если лунка вмещает всего один шарик, то попыток нужно сделать меньше, так как с каждым новым вброшенным шариком число свободных лунок уменьшается на единицу. В этом случае число попыток для нужного размещения шариков будет равно целому числу со 158 знаками. Оно получается перемножением всех чисел от нуля до сотни. Как понять насколько большие эти числа? Это проще всего сделать путем сравнения. Пусть мы делаем одну попытку всего за минуту, сколько попыток мы сделаем за год? Это легко подсчитать на калькуляторе, 360 дней умножить на 24 часа и на 60 минут, итого 525600, то есть около полумиллиона. Но миллион это число всего из 7 знаков, а нужно 158 или 200 знаков. Пусть мы делаем попытки в течение всего срока существования Земли, а это четыре с половиной миллиарда лет, и длительность каждой попытки сильно укоротим, до одной миллиардной доли секунды, примерно с такой частотой идут процессы на молекулярном уровне. Тогда число попыток возрастет до огромного числа, в нем будет уже 27 знаков. Однако, по-прежнему, далеко не дотягиваем до нужных 158 знаков. То есть на одном столе (рулетке) данная задача не разрешима для Земли. А если увеличим число столов до числа атомов, образующих нашу планету? А оно очень большое, и содержит 50 знаков. Тогда число попыток на всех столах за все время существования Земли будет равно числу с 77 знаками. Это число огромно, но и в нем число знаков почти в два раза меньше нужного. Если под шариками рулетки понимать, например, аминокислоты, то становится совершенно очевидно, что время жизни нашей планеты и ее размеры слишком малы, чтобы на ней случайно появился хотя бы один белок. Причем белок относительно небольшой, всего из сотни аминокислот. И уж тем более невозможно случайное появление многих белков или клеток.

Таким образом, факт невозможности случайного появления жизни строго доказывается математически. По аналогии также легко доказать, что случайным образом жизнь не могла возникнуть и где-либо еще в пределах нашей Вселенной, и как следствие не могла быть занесена из космоса на Землю. Остается признать, что вмешательство разумных сил в процессе создания жизни было необходимо.

Теперь посмотрим, можно ли объяснить функционирование живой клетки без вмешательства разумных сил.

В физике и химии большие коллективы молекул подчиняются первому и второму началу термодинамики. Первое начало термодинамики это, по сути, закон превращения и сохранения энергии. Второе начало термодинамики указывает, что в замкнутых системах энтропия должна возрастать. К примеру, если мы имеем заполненный газом сосуд, который соединен через отверстие с крышкой с пустым сосудом, то после открытия крышки, газ равномерно заполнит оба сосуда. Но возможно ли, чтобы газ обратно вернулся в первый сосуд? Если молекул газа мало, например всего пять штук, то конечно возможно, нужно только немного подождать, когда их случайные столкновения со стенками приведут к такой ситуации. Ну а если молекул миллионы, то время ожидания станет практически бесконечным, потому что встречные потоки молекул через отверстие будут уравновешивать друг друга. То есть второе начало термодинамики основано на статистической вероятности.

Одним из следствий первого начала термодинамики является невозможность создания вечного двигателя, а одним из следствий второго начала термодинамики является утверждение, что невозможно построить тепловую машину с коэффициентом полезного действия (КПД) больше, чем у идеальной машины Карно. Но вот в клетке многие белки работают как некие "молекулярные машины" и, похоже, они и не думают подчиняться второму началу термодинамики. Например, белки-ферменты ускоряют равновесный ход определенной химической реакции в тысячи раз. Они как роботы-манипуляторы захватывают своими "клешнями" нужные для реакции молекулы и соединяют их вместе, заставляя образовать нужное новое вещество. Эти молекулы могли бы соединиться и без помощи фермента, как и происходит в обычном химическом растворе. Но тогда реакция протекает в соответствии с условиями химического равновесия, и количество вступивших в реакцию молекул и еще не вступивших определяется температурой раствора, в соответствии с законами статистики или вторым началом термодинамики. Еще в те времена, когда второе начало термодинамики было только открыто и находилось в стадии осмысления, Максвелл указал забавный мысленный пример, когда оно может нарушаться. Если в описанной выше ситуации с двумя сообщающимися сосудами поместить некое разумное существо, которое будет открывать крышку для молекул, летящих с одной стороны, и наоборот, закрывать для молекул, летящих с другой стороны, то через некоторое конечное время все молекулы соберутся с одной стороны отверстия. То есть второе начало нарушается, если допустить вмешательство некоего разумного существа, в учебниках физики оно получило прозвище "демон Максвелла".

В случае с белками-ферментами мы, по сути, имеем дело с таким "демоном Максвелла", который нарушает второе начало термодинамики своим разумным вмешательством, ускоряя ход химических реакций при неизменной температуре (для человеческого тела эта температура равна 37 градусам по Цельсию). Это нарушение второго начала выражается еще и в том, что фермент как "молекулярная машина" совершает определенную работу с ненулевым КПД при постоянной температуре, как бы в отсутствии нагревателя и холодильника, чего требует идеальный цикл Карно. То есть он берет энергию не от нагревателя, а непосредственно от быстрых молекул вокруг себя, а тогда без "демона Максвелла" не обойтись. Конечно, убыль быстрых молекул должна приводить к понижению температуры окружающей ферменты среды, но тут на помощь приходят митохондрии, эти передвижные источники энергии в клетке, которые вырабатывают необходимое тепло, чтобы поддерживать температуру постоянной.

Понятно, что не только ферменты, но и любые "молекулярные машины" в клетках, такие как: ДНК полимераза, рибосома, сплайсосома и т.п. - должны обладать своими "демонами Максвелла", чтобы выполнять присущие им функции. То есть молекулярное тело такой машины является исполнительным элементом ("hard"), а управляющим элементом ("soft") является некий разумный "демон Максвелла", и без него любая "молекулярная машина" является просто бесполезным "железом", как робот или компьютер без управляющей программы.

Еще один простой пример необычного поведения молекул внутри клетки связан со сворачиванием линейной последовательности аминокислот белка в пространственную структуру. Эту последовательность можно уподобить липкой ленте, которая может случайно свернуться в произвольный клубок. Но в клетке она каким-то чудесным образом сворачивается в одну и ту же структуру из многих миллиардов возможных (парадокс Левинталя, 1968). В то же время искусственно созданная такая же последовательность аминокислот не обладает этим свойством. Она, как ей и полагается по закону случайности, сворачивается в произвольный клубок. Приемлемого объяснения не могут найти уже не один десяток лет.