Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Мое философское развитие - Рассел Бертран Артур Уильям - Страница 2
Завершив «Принципы математики», я начал настойчиво искать решение парадоксов. Это было почти личным вызовом, и при необходимости я готов был потратить на них всю оставшуюся жизнь. Однако по двум причинам я отказался от этого намерения. Во-первых, проблема в какой-то момент показалась мне тривиальной, а я ненавидел все недостойное внимания и интереса. Во-вторых, сколько я ни старался, решение не приходило. На всем протяжении 1903 и 1904 годов я почти все время занимался этим вопросом, но без каких-либо признаков успеха. Первой удачей стала (весной 1905 года) теория дескрипций. Она, разумеется, не была связана с противоречиями, но позже такая связь выявилась. В конце концов мне стало совершенно ясно, что в какой-то форме учение о типах существенно важно. Не настаивая на той конкретной форме, которая придана этому учению в «Principia Mathernatica», я остаюсь при полном убеждении, что без теории типов парадоксы разрешить невозможно.
Когда я искал решение, мне казалось, что для того, чтобы решение выглядело удовлетворительным, необходимы три условия. Первое из них и абсолютно обязательное: противоречия должны исчезнуть. Второе-весьма желательное, хотя логически не непременное: решение должно оставить в неприкосновенности как можно больше математики. Третье, трудно формулируемое: решение должно, видимо, апеллировать к так называемому «логическому здравому смыслу», т. е. оказаться в конце концов таким, каким мы его и ожидали увидеть. Из этих трех условий первое, разумеется, признано всеми. Второе, однако, отвергается теми, кто считает, что значительные разделы анализа в их нынешней формулировке неверны. Третье условие не считают существенно важным те, кто довольствуется логической техникой. Профессор Куайн, к примеру, нашел системы, которые привлекают своей изобретательностью. Но их нельзя считать удовлетворительными, поскольку они, видимо, созданы ad hoc; и они отличаются от тех систем, которые представлял бы себе самый умный логик, если бы не знал о противоречиях. По этому вопросу, однако, вышло огромное количество трудной для понимания литературы, и я не буду касаться более тонких моментов.
Объясню общие принципы теории типов, не вдаваясь в трудные технические детали. Возможно, лучше всего будет начать с того, что имеется в виду под «классом». Возьмем пример из домашнего хозяйства. Допустим, в конце обеда хозяин предлагает на выбор три сладких блюда, настаивая на том, чтобы вы попробовали одно, два или все три, как вы пожелаете. Сколько-линий поведения открыто перед вами? Вы можете от всего отказаться. Это первый выбор. Вы можете выбрать что-то одно. Это можно сделать тремя различными способами, и, следовательно, перед вами еще три варианта. Вы можете выбрать два-блюда. Это также возможно сделать тремя способами. Или вы можете выбрать все три, что дает одну, последнюю, возможность. Общее число возможностей, таким образом, равно восьми, т. е. 23 Можно легко обобщить эту процедуру. Положим, перед вами побъектов и вы желаете знать, сколько путей имеется, чтобы ничего не выбрать, или что-то выбрать, или же-выбрать все п.Вы обнаружите, что число путей 2n. Если выразить это в логическом языке: класс из п-токоличества элементов имеет 2n подклассов. Это суждение истинно и в том случае, когда пбесконечно. Кантор как раз и доказал, что даже в этом случае 2n больше, чем п.Применяя это, как сделал я, ко всем веща.м во Вселенной, мы приходим к заключению, что классов вещей больше, чем вещей. Отсюда следует, что классы не являются «вещами». Но поскольку никто не знает точно, что означает слово «вещь» в этом утверждении, не очень-то легко тбчно сформулировать, что именно удалось доказать. Заключение, к которому я пришел, состояло в том, что классы – это просто подсобное средство в рассуждении. Классы приводили-меня в замешательство уже в то время, когда я писал «Принципы математики». Тогда я выражал свои мысли на языке, который был реалистическим (в схоластическом смысле) в большей мере, чем мне представляется сегодня правильным. Я писал в предисловии к той работе: «Обсуждение неопределенностей (indefinables), составляющее главный предмет философской логики, имеет целью ясно увидеть и прояснить для других соответствующие сущности, чтобы разум мог быть с ними знаком так же, как с красным цветом или вкусом ананаса. Там, где-как в данном случае-неопределимости получаются прежде всего в качестве необходимого остатка в процессе анализа, зачастую проще знать, что такие сущности должны быть, чем наблюдать их актуально; здесь имеется аналогия с процессом открытия Нептуна, с тем различием, что последний этап– поиски с помощью умственного телескопа сущности, которая имеет выводной характер, – нередко является самой трудной частью во всем предприятии. Признаюсь, что в случае с классами я не смог увидеть понятия, выполняющего те условия, которым должно удовлетворять понятие „класс“. И противоречие, обсуждаемое в главе X, доказывает, что чего-то не хватает, но чего именно, я до сих пор не обнаружил».
Теперь мне следует сформулировать вопрос несколько иначе. Следует сказать, что если дана любая пропозициональная функция, скажем fx,имеется некоторая область значений х,для которых эта функция «значима», т. е. либо истинна, либо ложна. Если апринадлежит этой совокупности, то fa-суждение, которое либо истинно, либо ложно. Вдобавок к подстановке постоянной вместо переменной хесть еще две вещи, которые можно делать с пропозициональной функцией: можно утверждать, во-первых, что она всегда истинна, а во-вторых– что она иногда истинна. Пропозициональная функция «если хчеловек, то хсмертен» всегда истинна; пропозициональная функция «хчеловек» иногда истинна. Таким образом, с пропозициональной функцией можно проделать следующие три вещи: первое-подставить константу вместо переменной; второе-утверждать все значения функции: и третье-утверждать некоторые значения или по крайней мере одно значение. Сама по себе пропозициональная функция есть лишь выражение, она ничего не утверждает и не отрицает. Равным образом класс есть лишь выражение; это удобный способ говорить о значениях переменной, при которых функция истинна.
Что касается последнего из перечисленных выше трех условий, которым должно отвечать решение, то я выдвинул теорию, которая, видимо, другим логикам не понравилась; однако я до сих пор считаю ее здравой. Эта теория заключалась в следующем. Когда я утверждаю все значения функции fx,то значения, которые может принимать х,должны быть определенными (definite), если я хочу, чтобы то, что я утверждаю, было определенным. Должна быть, та.к сказать, некоторая тотальность возможных значений х.Если я теперь стану образовывать новые значения в терминах этой тотальности, то тотальность, по-видимому, будет из-за этого расширяться и, следовательно, новые значения, к ней относящиеся, будут относиться к этой более широкой тотальности. Но поскольку они должны быть включены в тотальность, тотальность никогда не будет поспевать за ними. Все это напоминает попытки прыгнуть на собственную тень. Проще всего проиллюстрировать это на парадоксе лжеца. Лжец говорит: «Все, что я утверждаю, ложно». Фактически то, что он делает, это утверждение, но оно относится к тотальности его утверждений, и, только включив его в эту тотальность, мы получаем парадокс. Мы должны будем различить суждения, которые относятся к некоторой тотальности суждений, и суждения, которые не относятся к ней. Те, которые относятся к некоторой тотальности суждений, никак не могут быть членами этой тотальности. Мы можем определить суждения первого порядка как такие, которые не относятся к тотальности (по totality) суждений; суждения второго порядка-.как такие, которые отнесены к тотальности суждений первого порядка и т. д. ad infiniturn. Таким образом, наш лжец должен будет теперь сказать: «Я утверждаю ложное суждение первого порядка, которое является ложным». Но само это суждение-второго порядка. Он поэтому не утверждает суждения первого порядка. Говорит он нечто просто ложное, и доказательство того, что оно также и истинно, рушится. Такой же точно аргумент применим и к любому суждению высшего порядка.
- Предыдущая
- 2/3
- Следующая