Выбери любимый жанр

Вы читаете книгу


 - Тайны космоса Тайны космоса

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Тайны космоса - - Страница 12


12
Изменить размер шрифта:

Что именно там происходит, астрономы попытаются выяснить при первом же удобном случае — как только им удастся засечь еще несколько подобных же источников гамма-излучения.

Звезда, рожденная звездой… Известно, что звезды образуются из скоплений звездной пыли и газов — в основном водорода и гелия. В торричеллиевой пустоте космоса малейший комок молекул начинает притягивать к себе другие молекулы. Возникает молекулярное облачко. Затем оно уплотняется и укрупняется, причем процесс зачастую приобретает лавинообразный характер; примерно так увеличивается снежный ком. И вот уже готов огромный, чудовищный по плотности плазменный шар, внутренность которого разогревается в результате сжатия до 12-15 млн градусов. На небосклоне зажигается новая звезда.

Таков обычный сценарий. Однако, как выяснилось совсем недавно, он не единственный. Орбитальный телескоп «Хаббл» продемонстрировал и другой вариант — рождение звезды от звезды.

Снимок, полученный с орбиты, показывает громадную звезду в созвездии Единорога, окруженную шестью маленькими звездочками, подобно тому как планеты бывают окружены спутниками.

Фотография, правда, не переворачивает представления о космологии с ног на голову; высказывания о подобной технологии зарождения звезд звучали и ранее. Однако снимок, сделанный в инфракрасных лучах, впервые позволил увидеть этот процесс воочию.

«Конечно, туг много неожиданного, — говорят астрономы. — Обычно звезды разнесены друг от друга на громадные расстояния во многие световые годы. Бывают, конечно, двойные и кратные звезды, обращающиеся вокруг общего центра масс. Но равновесие сил в таких системах большая редкость, чреватая катастрофами. Звезды в таких системах кружат друг подле друга, как воины перед схваткой, и могут в итоге слиться, поглотить друг друга. А чтобы звезда рождала себе подобных — такое мы вообще видим впервые».

В данном случае новорожденные звезды отстоят от материнской всего на 0,04-0,05 светового года. Причем никакого желания поглотить их она не выказывает. Напротив, полагают ученые, эти звездочки образовались как раз потому, что материнское небесное тело, обладая переизбытком массы (оно в 1 тыс. раз превосходит по массе наше Солнце), стало сбрасывать ее в окружающее пространство в виде огромных протуберанцев. Некоторые из них отрывались и становились самостоятельными небесными телами.

«Живородящая» звезда в созвездии Единорога отстоит от нас на 2500 световых лет. Это, в сущности, не так уж далеко, если иметь в виду, что только наша Галактика имеет в поперечнике около 100 тыс. световых лет. Раньше звезду и ее окружение не удалось разглядеть потому, что ее заслоняет от нас газовая туманность, из которой рано или поздно тоже должны образоваться новые звезды. Поэтому только в инфракрасных лучах удалось разглядеть, что же происходит там дальше, за туманной завесой.

Обнаружен край Вселенной? Открытия, сделанные тем же «Хабблом» в последние годы, могут удивить кого угодно. Более 40 млрд галактик — вот сколько новых небесных объектов сразу открыл он только в январе 1996 года. Правда, это не конкретные галактики, обнаруженные в определенном месте, а новая оценка размеров Вселенной. Она была произведена после того, как орбитальный телескоп заглянул в глубь пространства и времени, запечатлев на снимках те окраины Вселенной, куда еще никогда не проникал человеческий взор.

До последнего времени считалось, что всего во Вселенной порядка 10 млрд галактик. Теперь же эта цифра увеличена вчетверо. Сколько же тогда всего на свете звезд, если только в нашем Млечном Пути, как уже говорилось, их около 250 млрд?

Увеличить количество небесных объектов помогла новая техника. Например, недавно для наблюдений астрономы выбрали один из секторов небосвода около ручки «ковша» Большой Медведицы. Несмотря на то что сектор был взят крошечный — 1/25 градуса (такой угловой размер имеет песчинка, лежащая на ладони вытянутой руки) — и никакими особыми звездами не примечательный, внимательный взор позволил за 12 суток — с 18 до 29 декабря 1995 года различить здесь тысячи галактик, прежде неизвестных ученым.

У одних наблюдалась привычная форма спирали или эллипса, другие оказались вытянутыми в линию, третьи вообще образовали причудливые фигуры, которым и названия не подберешь. По мнению астрономов, эти последние, по-видимому, не вышли из «детского сада» — стадии протогалактик. Примерно так же 10 млрд лет тому назад должен был выглядеть и наш Млечный Путь.

Таким образом, с помощью современной техники астрономам удалось разглядеть объекты, в 4 млрд раз более тусклые, чем может различить на небе невооруженный глаз. Ну а поскольку в астрономии наблюдается четкая зависимость между пространством и временем, то получается: «Хаббл» увидел Вселенную такой, какой она была «на заре туманной юности», раз в 20 ближе к моменту ее рождения, чем к сегодняшним дням.

Молекулы в космосе

Современная техника также позволяет рассмотреть в космосе не только огромные объекты, но и самые маленькие. Речь в данном случае идет о молекулах и атомах.

Если раздуть «электронное облако»… В начале века знаменитый датский ученый Нильс Бор предположил, что атом по своему внешнему виду несколько похож на воздушный шарик. Оболочку его составляет «электронное облако» — электроны, вращающиеся по своим орбитам вокруг компактного ядра, слепленного из протонов и электронов.

Позднее ученые усовершенствовали эту модель, разобрались во многих тонкостях процессов микромира. И стало понятно, что «электронное облако» тоже можно «раздуть». Достаточно добавить электрону дополнительную энергию, и он перейдет на более высокую орбиту. А значит, атом увеличится в объеме.

В обычных, земных условиях «раздутое» состояние не может быть устойчивым. Соседние атомы, находящиеся в той же кристаллической решетке, помешают «электронному шару» раздуваться до бесконечности. Он вскоре потеряет излишнюю энергию, отдав ее в пространство в виде электромагнитного излучения. Электрон при этом перейдет на более низкую орбиту, и атом снова приобретет нормальные размеры.