Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Вселенная Хонор Харрингтон - Вебер Дэвид Марк - Страница 3
При межзвездных полетах, тем не менее, быстро выяснилось слабое место импеллерного двигателя. Для него гравитатационный сдвиг был куда опаснее, чем для традиционных реактивных кораблей, из-за интерференции гравитационного потока и искусственного напряжения гравитации на клине.
Военные, со своей стороны, быстро выяснили, что, хотя передняя и задняя части клина должны оставаться открытыми, можно установить дополнительные генераторы боковых гравитационных «стен» для защиты от вражеского огня. Ибо даже лазерный луч (генерировавшийся по технологиям того времени) не может преодолеть зону в которой локальная гравитация меняется от нуля до сотен тысяч g . Возможность генерировать лучи достаточной мощности, чтобы «прожечь» гравистену хотя бы на короткой дистанции не появится еще несколько веков, но уже через пятьдесят лет будут разработаны пенетраторы давшие ракетам, также оснащенным импеллерными двигателями, возможность проникать за гравистенку. С того времени началась постоянная гонка между разработчиками защитных систем, модифицируемых чтобы противостоять пенетраторам, и разработчиками новых пенетраторов, созданных чтобы преодолевать защиту.
Недостатки импеллерного двигателя быстро стали очевидными кораблестроителям Беовульфа и несколько десятилетий он считался пригодным только для внутрисистемных полетов. Тем не менее, в 1273 году э.р. ученый со Старой Земли, Адрианна Варшавская, нашла способ применения новой технологии для гиперпространственного полета. До того любая попытка задействовать импеллер в гиперпространстве неизбежно заканчивалась катастрофой, но доктор Варшавская нашла обходной путь решения проблемы. Она изобрела устройство способное сканировать гиперпространство на предмет наличия гравитационных потоков в радиусе пяти световых секунд от корабля (и до сих пор гравитационные сканеры называют «детекторами Варшавской»). Это дало возможность использовать импеллер между потоками, которые теперь можно было заблаговременно обнаруживать и избегать.
Одного этого было бы достаточно, чтобы заслужить вечную признательность потомков, но, по сравнению со следующим изобретением доктора Варшавской, значимость первого меркнет. Она проникла в природу феномена гравитационных потоков глубже чем кто-либо другой, и внезапно осознала возможность переконфигурировать стандартный импеллер, чтобы он проецировал свои гравитационные потоки под прямым углом к оси корабля. Тогда, конечно, пропадал эффект «захвата» куска обычного пространства, но зато эти перпендикулярные гравитационные поля можно было синхронизировать по фазе с потоком и устаранить опасную интерференцию. Более того, новые поля стабилизируют корабль относительно потока и, тем самым, устраняют опасность гравитационного сдвига. Новые импеллерные узлы, «альфа-узлы», которые она установила на свой корабль «Флитвинг», развернули гигантские нематериальные паруса: круглые, тарелкообразные гравитационные полосы, более двухсот километров в диаметре. Совместно с ее же гравитационными детекторами «читающими» гравитационные потоки, альфа-узлы позволяли в буквальном смысле слова «идти под парусами» в гравитационном потоке развивая неслыханные ускорения.
Мало того, взаимодействие паруса и гравитационного потока приводило к возникновению мощного энергетического потенциала, к которому можно «подключится» и снабжать энергией корабль. Фактически, «поставив паруса» корабль получал достаточно энергии чтобы их поддерживать, управлять ими, и для любой мыслимой потребности на борту самого корабля, таким образом позволяя заглушить генераторы до момента выхода из гиперпространства. Гиперкорабль под парусами Варшавской не нуждался в рабочем теле для реактивных двигателей, почти не нуждался в топливе, и мог сколь угодно долго поддерживать высокое ускорение, снимая проблему потери скорости при переходе между гиперполосами и позволяя осваивать верхние полосы.
Все это в результате позволило достичь высоких скоростей при межзвездных перелетах. Ограничение безопасной скорости 0, 6 c в любой из гиперполос осталось, но в верхних полосах эффект сжатия пространства увеличивал эффективную скорость в геометрической прогрессии. До появления парусов Варшавской пространственный разрыв делал переход в верхние полосы опасным, а потеря скорости — экономически невыгодным для реактивных кораблей. Теперь же потеряную скорость можно было быстро набрать заново и, в результате, ужасные гравитационные потоки превратились в надежную дорогу к другим мирам, а капитаны избегавшие их как огня, теперь искали их своими новыми инструментами и переходили из потока в поток на импеллере.
Конечно не всегда находился поток идущий в нужном кораблю направлении, но используя гравидетекторы можно было, по крайней мере, передвигатся в гипере на импеллере. Вдобавок, под парусами Варшавской корабль мог идти под углом к потоку. При угле 60° парус начинал «терять ветер», а при угле около 85° окончательно терял тягу. По тому же принципу гиперкорабль мог идти «в бейдевинд» 2 под углом до 45°. При более крутых углах приходилось идти галсами, тратя на путешествие в одну сторону значительно больше времени. чем в другую. Так старая техника «выжимания ветра» земных моряков получила второе рождение в космическую эру. К 1750 году э.р. тюнеры парусов получили возможность менять «фактор захвата» намного более изощренным способом, чем позволяли изобретения доктора Варшавской. Стало возможным установить «фактор захвата» отрицательным, что позволило кораблям идти прямо «навстречу ветру», хотя и за счет повышения опасности сбоя в аппаратуре парусов.
«Пробивание стенки» между гиперполосами под парусами Варшавской также стало намного безопаснее, хотя аварии случаются и по сей день. Обеспечив доступ к верхним гиперполосам, парус Варшавской позволил первым поколениям кораблей развивать скорость более 800 c , на этот раз скорость лимитировалась дальностью действия гравидетекторов. В верхних полосах гравитационные потоки не только мощнее, но и расположены ближе друг к другу из-за эффекта общего сжатия пространства. Дальности в пять световых секунд не хватало для получения своевременного предупреждения о приближении к потоку выше чем в гамма-полосе. Да и проблема с набором скорости все еще оставалась. Приходилось настраивать паруса Варшавской так, чтобы большая часть энергии потока «посачивалась» сквозь него, ограничивая ускорение величинами переносимыми слабым человеческим телом.
В 1384 году э.р. физик по имени Шигемацу Радхакришнан совершил другое крупное открытие — компенсатор инерции. Компенсатор превращал гравитационный поток пронизывающий судно в своего рода «инертную трясину», компенсируя силу инерции потоком и защищая экипаж от последствий ускорения. В пределах эффективного действия компенсатора он полностью устранял перегрузки, оставляя внутри корабля постоянную гравитацию. Его способность гасить инерцию была прямо пропорциональна мощности гравитационного потока и обратно пропорциональна защищаемому объему и массе корабля. Это делало его, во-первых, более эффективным в гиперпространстве, так как там естественные гравитационные потоки отличаются большой мощностью, и, во-вторых, более эффективным для маленького корабля, чем для большого.
Гравитационные потоки в гиперпространстве несравненно мощнее искусственных, создаваемых импеллером, что означает для корабля под парусами Варшавской возможность развивать без вреда для пассажиров намного большие ускорения. Компенсатор позволил добиться ускорений до 550 g на импеллере и до 4—5 тысяч g под парусами. Таким образом «утекшую» после перехода между гиперполосами скорость стало возможно заново набрать достаточно быстро. Впрочем вышеприведенные цифры относятся к военным компенсаторам, более массивным, требующим больше энергии и внимания техников чем те, которые используются большинством торговцев. Военные не могут себе позволить быть менее маневренными, чем противник, но цену за это приходится платить непозволительную для торговца.
2
Для парусного судна — навстречу ветру.
- Предыдущая
- 3/14
- Следующая