Вы читаете книгу
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Вайнберг Стивен
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Вайнберг Стивен - Страница 37
Тот тип красоты, который мы обнаруживаем в физических теориях, очень ограничен. Если только мне удалось правильно схватить суть и выразить ее в словах, речь идет о красоте простоты и неизбежности, о красоте идеальной структуры, красоте подогнанных друг к другу частей целого, красоте неизменяемости, логической жесткости. Такая красота классически строга и экономна, она напоминает красоту греческих трагедий. Но ведь это не единственный тип красоты, известный нам в искусстве. Например, мы не найдем этой красоты в пьесах Шекспира, по крайней мере, если не касаться его сонетов. Часто постановщики шекспировских пьес выкидывают целые куски текста. В экранизации «Гамлета» Лоуренсом Оливье Гамлет не говорит: «О, что за дрянь я, что за жалкий раб!..» И тем не менее пьеса не разрушается, так как шекспировские пьесы не обладают совершенной и экономной структурой, как общая теория относительности или «Царь Эдип»; наоборот, эти пьесы представляют собой запутанные композиции, причем их беспорядочность отражает сложность реальной жизни. Все это составляет часть красоты пьес Шекспира, которая, на мой вкус, более высокого порядка, чем красота пьесы Софокла или красота ОТО. Пожалуй, самые сильные моменты в пьесах Шекспира – это те, когда он полностью пренебрегает канонами греческой трагедии и внезапно вводит в действие комичного простака, какого-нибудь слугу, садовника, продавца смокв или могильщика и делается это как раз перед тем, как главные герои пьесы встречаются со своей судьбой. Несомненно, красота теоретической физики была бы очень дурным образцом для произведений искусства, но так или иначе она доставляет нам радость и служит путеводной нитью.
Есть и еще одно обстоятельство, которое заставляет меня думать, что теоретическая физика – плохой образец для искусств. Наши теории очень закрыты для всеобщего обозрения, причем по необходимости, так как мы вынуждены пользоваться при развитии этих теорий языком математики, не ставшей пока что частью интеллектуального багажа всей образованной публики. Вообще говоря, физики не любят признаваться, что их теории так эзотеричны. С другой стороны, я не один раз слышал, как некоторые художники с гордостью говорили о том, что их картины доступны для понимания только маленькой группе единомышленников, и в качестве подтверждения ссылались на пример физических теорий, вроде общей теории относительности, которые также понятны лишь избранным. Конечно, художники, как и физики, не всегда могут быть понятными широкой публике, однако эзотеризм как самоцель – просто глупость.
Хотя мы ищем теории, красота которых основана на жесткости, которую дают простые основополагающие принципы, все же создание теории – это не просто математический вывод следствий из набора заранее предписанных принципов. Эти принципы часто формулируются в процессе нашего продвижения вперед, иногда специально в такой форме, которая приводит к желаемой нами степени жесткости теории. У меня нет сомнений в том, что одна из причин, по которой Эйнштейн был так удовлетворен собственной идеей об эквивалентности гравитации и инерции, заключалась в том, что этот принцип приводил лишь к одной-единственной достаточно удовлетворительной теории тяготения, а не к бесконечно большому множеству возможных теорий. Получение следствий из определенного набора четко сформулированных физических принципов может оказаться делом сложным или не очень, но именно этому и учат физиков в высшей школе, и именно этим они, вообще говоря, любят заниматься. Формулировка же новых физических принципов – мучительный процесс, и этому, по-видимому, нельзя научить.
Красота физических теорий находит отражение в жестких математических структурах, основанных на простых основополагающих принципах. Поразительно, что даже если принципы оказываются неверными, структуры, обладающие красотой подобного типа, выживают. Хорошим примером является теория электрона Дирака. В 1928 г. Дирак попытался пересмотреть шредингеровскую версию квантовой механики, основанную на волнах частиц, с тем чтобы совместить ее с специальной теорией относительности. Эта попытка привела Дирака к выводу, что электрон должен обладать определенным спином и что Вселенная заполнена ненаблюдаемыми электронами с отрицательной энергией, отсутствие которых в определенной точке наблюдалось бы в лаборатории как наличие электрона с противоположным зарядом, т.е. античастицы электрона. Теория Дирака завоевала необычайный авторитет после открытия в 1932 г. в космических лучах как раз такой античастицы электрона, получившей название позитрона. Эта теория стала ключевой составной частью квантовой электродинамики, развитой и успешно примененной для анализа физических явлений в 30-х и 40-х гг. Однако сегодня мы знаем, что точка зрения Дирака была во многом ошибочной. Правильным способом объединения квантовой механики и специальной теории относительности оказалась не релятивистская версия волновой механики Шрёдингера, как думал Дирак, а более общий формализм, разработанный Гейзенбергом и Паули в 1929 г. и известный под названием квантовой теории поля. В этой теории не только фотон рассматривается как сгусток энергии поля, а именно электромагнитного поля, но и электроны, и позитроны являются сгустками энергии электронного поля, и все другие частицы представляют сгустки энергии различных полей. Почти по случайным причинам дираковская теория электрона приводила к тем же результатам, что и квантовая теория поля, для процессов с участием только электронов, позитронов и фотонов. Но квантовая теория поля является значительно более общей: она может рассматривать процессы типа ядерного бета-распада, которые совершенно непостижимы в рамках теории Дирака[108]. В квантовой теории поля нет никаких специальных требований, чтобы частица имела какой-то определенный спин. Оказалось, что спин электрона как раз такой, какой требует теория Дирака, но есть и другие частицы, с другими спинами, и у них тоже есть античастицы, причем все это не имеет никакого отношения к отрицательным энергиям и связанным с ними рассуждениям Дирака[109]. Однако математический формализм дираковской теории сохранился как существенная часть квантовой теории поля. Его обязаны изучать в любом курсе лекций по современной квантовой теории для старшекурсников. Таким образом, формальная структура теории Дирака пережила смерть принципов релятивистской волновой теории, которым следовал Дирак при построении своей теории.
Итак, математические структуры, развиваемые учеными для реализации физических принципов, обладают странным свойством подвижности. Их можно переносить от одного концептуального окружения к другому, они могут служить разным целям. Так, лопаточные кости в теле человека играют роль соединения между крыльями и телом птицы или ластами и телом дельфина. Физические принципы приводят к красивым структурам, которые остаются жить, даже когда умирают принципы.
Возможное объяснение было предложено Нильсом Бором[110]. Рассуждая в 1922 г. о будущем своей ранней теории строения атомов, он заметил, что «в математике существует ограниченное число форм, которые нам удается использовать для описания природы, и может так случиться, что кто-нибудь обнаружит правильные формы, исходя из совершенно неверных представлений». Бор оказался совершенно прав в отношении будущего собственной теории: принципы, лежащие в ее основе, были отвергнуты, но мы до сих пор используем некоторые элементы ее языка и методы вычислений.
Именно применение чистой математики к физике дает поразительные примеры эффективности эстетических суждений. Уже давно стало общим местом утверждение, что математики руководствуются в своей работе желанием построить такой формализм, принципы которого красивы. Английский математик Г. Харди пояснял, что «математические структуры должны быть так же красивы, как те, которые используют художники или поэты. Идеи, как краски или слова, должны гармонично сочетаться друг с другом. Красота – первый тест. Уродливой математике нет места»[111]. И вот оказалось, что благоговейно разрабатывавшиеся математиками структуры, в которых они искали красоту, позднее часто становились необычайно важными для физиков.
- Предыдущая
- 37/82
- Следующая
