Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Шаг за шагом. Транзисторы - Сворень Рудольф Анатольевич - Страница 41


41
Изменить размер шрифта:

Рис. 57. Семейство выходных характеристик транзистора показывает, как меняется коллекторный ток при изменении коллекторного напряжения и при различных напряжениях на базе.

Что же можно увидеть, всматриваясь в семейство выходных характеристик транзистора? Прежде всего эти характеристики позволяют судить о том, что происходит в коллекторной цепи при работе усилительного каскада, то есть когда одновременно меняется и входное напряжение, и напряжение на коллекторе. (Напряжение на коллекторе меняется потому, что под действием сигнала в итоге меняется напряжение на нагрузке: чем больше напряжение на нагрузке, тем меньше оно на самом коллекторе.)

Кроме того, выходные характеристики позволяют определить, как влияют на режим транзистора напряжение источника питания, напряжение, действующее во входной цепи Uэб, и само сопротивление нагрузки . Наконец, семейство выходных характеристик позволяет разумно выбрать режим транзисторного усилителя, а также определить один из основных его параметров — выходное сопротивление Rвых. С определения этого параметра мы, пожалуй, и начнем (рис. 58).

Рис. 58. Соотношение между выходным напряжением и выходным током можно характеризовать величиной выходного сопротивления; нужно различать выходное сопротивление для постоянного и переменного (меняющегося) тока.

Когда решается вопрос о выборе нагрузки для транзисторного усилителя, то прежде всего нужно знать, куда эта нагрузка попадет — каково сопротивление цепи, в которую нагрузка будет включена. Именно сопротивление усилителя «со стороны нагрузки», сопротивление, с которым встретится нагрузка, попав в усилительный каскад, и называется выходным сопротивлением Rвых усилителя. В нашей схеме (мы не случайно все время подчеркиваем «в нашей схеме» — в других схемах все может быть по-другому, и вы в этом скоро убедитесь) нагрузка включается в коллекторную цепь. И выходное сопротивление Rвых — это внутреннее сопротивление самого транзистора от вывода коллектора до вывода базы. Сопротивлением источника питания, который также входит в коллекторную цепь, можно пренебречь — оно очень мало, а при последовательном соединении главную роль играет большое сопротивление, в данном случае — сопротивление коллекторного рn-перехода (Воспоминание № 5).

В общих чертах можно сразу сказать, что выходное сопротивление Rвых в нашей схеме будет весьма большим, так как коллекторный переход — это, по сути дела, диод, включенный в обратном направлении. Подсчитать величину Rвых можно, пользуясь одной из выходных характеристик транзистора. На рис. 58 для этого используется выходная характеристика (зависимость  от Uбк, снятая при Uэб = 200 мв.

Давайте для начала, не обращая внимания на то, что происходит в самом транзисторе, поступим с ним так же, как поступали в свое время при определении входного сопротивления (рис. 56). Давайте заменим весь полупроводниковый триод одним резистором Rвых и будем считать, что именно к нему подключается нагрузка.

Выходное сопротивление для постоянного тока Rвых= определяется просто: постоянное напряжение на коллекторе Uбк нужно разделить на постоянный коллекторный ток . Выходное сопротивление Rвых= очень сильно зависит от режима входной цепи, от управляющего напряжения Uэб. Когда транзистор заперт, когда нет тока в его коллекторной цепи, то Rвых=, естественно, бесконечно велико.

«Плюс» на базе ничего не меняет, так как триод продолжает оставаться закрытым. Зато с появлением на базе «минуса» появляется коллекторный ток  и сопротивление Rвых= резко уменьшается. Чем больше «минус» на базе, тем больше , тем, следовательно, меньше Rвых=. Выходное сопротивление для постоянного тока может быть очень небольшим, вплоть до нескольких омов и даже долей ома. Совсем другие величины характеризуют выходное сопротивление для переменного тока.

Динамическое сопротивление Rвых будем определять так же, как определяли и динамическое входное сопротивление: изменим коллекторное напряжение на величину ΔUбк, посмотрим, на какую величину ΔIк при этом изменится коллекторный ток, а затем найдем Rвых по формуле закона Ома: Rвых = ΔUбк:ΔIк. У транзистора, характеристика которого приведена на рис. 57 и 58, выходное сопротивление оказалось равным 100 ком. В действительности же для нашей схемы величина Rвых может оказаться значительно больше, иногда достигая даже нескольких мегом.

То, что Rвых должно быть очень большим, видно по самой выходной характеристике: почти на всем протяжении она представляет собой слегка наклоненную прямую линию. Небольшой наклон характеристики говорит о том, что при изменении Uбк ток  меняется очень мало, а это как раз и свидетельствует о большом сопротивлении цепи.

Каждая выходная характеристика из нашего семейства, в частности характеристика, снятая при входном напряжении Uэб = 200 мв, по сути дела, представляет собой обратную ветвь вольтамперной характеристики полупроводникового диода (рис. 19). И это вполне понятно: ведь коллекторный переход — это не что иное, как полупроводниковый диод, включенный в обратном направлении. Не стоит придавать значения тому, что выходная характеристика транзистора в сравнении с характеристикой диода оказывается перевернутой «вверх ногами». Характеристика перевернута только потому, что «ее так повесили», только потому, что нам так удобней на нее смотреть. Только поэтому коллекторный ток, который является обратным током «коллекторного диода», растет не вниз от нуля, а вверх, и только поэтому «минус» напряжения на коллекторе мы откладываем не влево от нуля, а вправо.

Выходная характеристика транзистора похожа на вольтамперную характеристику диода «во всех подробностях». При небольших напряжениях на выходной характеристике имеются загибы, а при больших напряжениях ток  резко возрастает. Это начинается электрический пробой, вслед за которым, как мы уже знаем, произойдет тепловой пробой, и транзистор выйдет из строя. Таким образом, можно сразу же сделать некоторые рекомендации по поводу рабочего режима транзистора: напряжение на коллекторе никогда не должно заходить в область левого загиба, так как в этой области происходит искажение формы сигнала (подобно тому, как искажается сигнал на загибах входной характеристики; рис. 55). С другой стороны, напряжение на коллекторе не должно заходить в область правого загиба, то есть не должно заходить в область пробоя. На деле, выбирая режим транзисторного усилителя, приходится вводить еше более строгие ограничения.

На семействе выходных характеристик транзистора нужно отметить несколько запретных зон (рис. 59). Это говорит о том, что коллекторный ток и коллекторное напряжение не должны быть ни слишком большими, ни слишком малыми, что они могут изменяться не как угодно, а лишь в определенных пределах — в пределах не заштрихованной на рисунке рабочей зоны.

Рис. 59. На выходной характеристике можно отметить запрещенные области, то есть такие значения коллекторного тока и напряжения, которые по каким-либо причинам не должны (или не могут) появляться.