Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан - Страница 8
Хайям рассматривал четырехугольник с вершинами А, В, С и D, такой, что стороны АВ и CD конгруэнтны (то есть одна из них может быть наложена на другую), а углы при вершинах А и D являются прямыми. Омар Хайям доказал, что углы при вершинах В и С также конгруэнтны, но он не утверждал, что они должны быть прямыми. Четырехугольник такого типа имеет следующий странный вид:
В эпоху Возрождения дальнейшие исследования связаны с работой Христофора Клавия (1538–1612), который в 1584 г. составил комментарии к «Началам». Он добавил также свои предложения, увеличив их количество до 1234.
Между 1603 и 1607 гг. он выпустил первое издание «Начал», предназначенное для Китая. Именно этот текст позднее использовали в своих исследованиях Саккери и Декарт.
Из-за своих дополнений к «Началам» Клавий прославился как «Евклид шестнадцатого века». Его работа была довольно радикальной, но он многое сделал в других областях. Он являлся активным сторонником григорианского календаря, и именно благодаря ему после четверга, 4 октября 1582 г. по юлианскому календарю, идет пятница, 15 октября 1582 г. по григорианскому календарю. Расчеты Клавия позволили перейти от одного календаря к другому, удалив 10 дней из истории человечества!
Клавий привел доказательство пятого постулата, снова использовав для этого сам пятый постулат: линия, равноудаленная от данной прямой линии, также является прямой. Несмотря на другие свои достижения, Клавий не достиг успеха в попытке исправить и дополнить великого мастера.
Преподаватель Оксфордского университета Джон Валлис (1616–1703) был одним из пионеров современной математики. Он ввел новую интерпретацию пятого постулата, отказавшись от идеи равноудаленности и использовав рассуждения с треугольниками. Валлис показал, что «для любого треугольника можно построить другой треугольник с теми же углами и пропорциональными сторонами». Однако и это утверждение также эквивалентно исходному постулату:
Все аргументы так или иначе сводились к утверждениям, эквивалентным пятому постулату, потому что сам подход был ошибочным: в доказательстве уже использовалось то, что они хотели доказать.
Казалось, ситуация зашла в тупик, но тут появился Джироламо Саккери. Итальянский математик воспользовался методом доказательства от противного, при котором сначала формулируют предположение, противоположное тому, что хотят доказать, а затем логически доказывают, что это предположение ведет к противоречию. Таким образом, Саккери подумал, что ему удалось доказать постулат, но потом он понял, что так и не получил убедительного противоречия.
Его работа неявно предполагает существование других геометрий, которые возникают именно из-за невозможности достижения противоречия, исходя из предположения о ложности пятого постулата. Сам не осознавая того, Саккери создал новую геометрию, в которой пятый постулат заменен противоположным ему утверждением.
Саккери начал с идеи Омара Хайяма и рассмотрел тот же четырехугольник ABCD, у которого стороны АВ и CD конгруэнтны, а углы при вершинах А и D прямые. Четырехугольники такого вида называются теперь четырехугольниками Саккери.
Чтобы доказать пятый постулат, Саккери показал, что углы при вершинах В и С прямые. В соответствии с пятым постулатом, угол В равен углу С. В этом случае существует три возможности.
1. Гипотеза о прямых углах: углы В и С являются прямыми.
* * *
ДЖИРОЛАМО САККЕРИ (1667–1733)
Саккери еще молодым человеком вступил в орден иезуитов и преподавал теологию в иезуитском колледже в Милане. Позднее он преподавал философию в Турине. Но его интересы этим не ограничивались. Работая преподавателем математики в университете Павии, он занимался пятым постулатом Евклида и представил результаты исследований в своем главном труде Euclides ab omni naevo vindicatus («Евклид, очищенный от всех пятен»).
* * *
2. Гипотеза о тупых углах: углы В и С являются тупыми, то есть их величина больше 90° и меньше 180°.
3. Гипотеза об острых углах: углы В и С являются острыми, то есть их величина больше 0° и меньше 90°.
Саккери показал, что пятый постулат эквивалентен гипотезе о прямых углах, а затем попытался доказать, что другие гипотезы приводят к противоречию. Если бы ему это удалось, то постулат был бы доказан. Рассматривая вторую гипотезу (случай тупых углов), он получил противоречие и отбросил эту возможность. Еще раньше он показал, что сумма четырех углов должна быть меньше или равна 360°. Но для гипотезы острых углов ему не удалось получить противоречия. Теперь-то мы точно знаем, что противоречия не существует, и гипотеза об острых углах является одной из основ неевклидовой геометрии. Спустя столетие Ламберт, о котором мы подробнее расскажем позже, также безуспешно попытался доказать постулат исходя из того, что углы А, В и D являются прямыми.
Исходя из гипотезы об острых углах, Саккери получил различные результаты неевклидовой геометрии. Например, он показал, что гипотезы о прямых, тупых и острых углах эквивалентны тому, что сумма внутренних углов треугольника равна, больше или меньше двух прямых углов соответственно. Он также доказал некоторые результаты, необычные для евклидовой геометрии. Вот один из них.
Пусть точка Р находится вне прямой линии l. Если мы рассмотрим все прямые, проходящие через Р, то увидим, что существуют две предельные прямые (в математических терминах они называются «асимптотическими»), обозначенные на рисунке буквами m и n. Они делят пучок всех прямых на две части, в одной из которых находятся все прямые линии, которые пересекают прямую l (например, пунктирная прямая s), а в другой — все прямые, которые l не пересекают (например, пунктирная прямая l).
Геометрия, построенная на гипотезе об острых углах и тем самым отрицающая пятый постулат, в наше время известна как гиперболическая.
На следующем рисунке показано, как в гиперболической геометрии выглядит предыдущий рисунок. Теперь прямые линии тип изображены в виде кривых не потому, что они действительно такие, а для того чтобы не возникло путаницы с евклидовой ситуацией. На таком рисунке хорошо видно, что представляют собой асимптотические прямые шип.
Представление прямых линий кривыми очень полезно для понимания и изучения гиперболической геометрии, каким бы нелогичным это ни казалось в евклидовом смысле.
Работа Саккери содержит первые результаты этой новой геометрии. Достижение итальянского математика поразительно, но, к сожалению, ему не хватило смелости. Осознавая странность своих выводов, он пишет в предложении XXXIII своего трактата: «Гипотеза об острых углах является абсолютно ложной, поскольку противоречит самому понятию прямой линии». Казалось, что задача о параллельных прямых останется нерешенной еще многие годы.
- Предыдущая
- 8/29
- Следующая