Вы читаете книгу
Мир математики. т 40. Математическая планета. Путешествие вокруг света
Альберти Микель
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Мир математики. т 40. Математическая планета. Путешествие вокруг света - Альберти Микель - Страница 27
Изометрия — это преобразование, не изменяющее форму и размер объектов.
На плоскости определены три изометрических преобразования: параллельный перенос, поворот и отражение (осевая симметрия). Параллельный перенос попросту меняет положение фигуры, поворот заключается во вращении фигуры вокруг неподвижной точки, называемой центром, отражение представляет собой осевую симметрию относительно отрезка. Какие из этих преобразований можно применить к квадрату так, чтобы результат преобразования совпадал с исходной фигурой?
Наименьший угол поворота, при котором квадрат остается неизменным, равен 90°. Такой поворот представляет собой преобразование четвертого порядка:
* * *
ГЕОМЕТРИЯ В ИЗМЕРЕНИИ ПРОСТРАНСТВА И ВРЕМЕНИ
Осознаем ли мы что-то так же четко, как ход времени? Сегодня время измеряется в секундах, минутах, часах, днях, месяцах, годах и единицах, кратных и дробных указанным. Не так давно расстояния также измерялись по времени в пути. Для измерения интервалов времени меньше дня или ночи мореплаватели изготавливали различные приспособления. Одним из них был пустой кокос с небольшим отверстием в нижней части. Кокос помещался в таз с водой, постепенно наполнялся и полностью погружался в воду примерно за один час.
Еще одно из таких устройств применяется до сих пор — это песочные часы. В идеальном варианте песчинки падают одна за другой через узкое отверстие, соединяющее два стеклянных конуса. Это наводит на мысли о времени как о дискретной величине, которую можно измерить отдельными песчинками. Однако мы представляем время как непрерывную величину, которая описывается движением радиуса окружности, закрепленного одним концом в ее центре. Измерение времени тесно связано с окружностью и ее делением на 60 частей. Эту систему мы унаследовали от народов Месопотамии и используем как для определения времени, так и для ориентирования в пространстве.
* * *
если мы выполним его четыре раза, то любая фигура вернется в исходное положение.
Если мы обозначим его через I (тождественное преобразование), то четыре возможных поворота будут обозначаться так: G41, G42, G43 и G44 = I. Квадрат также остается неизменным при отражении (зеркальной симметрии) одного из следующих видов: (а) вертикальном; (Ь) горизонтальном; (с) относительно восходящей диагонали; (d) относительно нисходящей диагонали. Все эти виды симметрии имеют порядок, равный двум: если мы применим их дважды к одной и той же фигуре, то получим исходную фигуру. Обозначив через S указанные разновидности зеркальной симметрии, получим: SH, SF, SD1 и SD2. Композиция любого из этих преобразований с самим собой будет тождественным преобразованием I:
Sн°Sн = I, Sv°Sv = I, SD1°SD1 = I у SD2°Sd2 = I
Все подобные преобразования будут принадлежать группе восьмого порядка, и в этом — их сходство со структурой родственных отношений у варлпири. Два цикла четвертого порядка по материнской линии соответствуют поворотам четвертого порядка, четыре цикла второго порядка по отцовской линии — четырем видам зеркальной симметрии, также второго порядка.
Возможно, варлпири не знают, что их структура родственных связей соответствует объекту, который в западной математике называется группой изометрии восьмого порядка. Однако варлпири определили аналогичное понятие самостоятельно и выстраивают социальные, политические, религиозные и родственные отношения в соответствии с ним. Конечно, система отношений варлпири не является результатом практического применения западной математики. Аборигены использовали эту изометрическую систему задолго до того, как на западе были описаны подобные отношения.
Азартные игры существуют во всех культурах и представляют собой один из видов социального взаимодействия. Ставки делаются на один из множества возможных исходов некоторого события, которое, по крайней мере отчасти, является случайным, то есть его результат нельзя достоверно предсказать заранее. К подобным событиям относятся скачки, игра в кости и множество других азартных игр. Сам факт участия в игре означает, что игрок знаком с ее правилами и ограничениями и, кроме того, понимает, что исход игры является случайным. Именно элемент случайности так привлекает к игре людей. Большие суммы выигрываются при ставках на исходы, маловероятные как в математическом, так и в социальном смысле (когда никто или почти никто не ставит на такой исход).
Одинаково ли понимается случайность во всех странах мира? Ответить на этот вопрос нелегко. В некоторых культурах считается, что случайность находится в руках богов и представляет собой выражение их воли. Чтобы узнать волю богов, верующие бросают камни, кости или изучают внутренности животных. В других культурах случайность сводится к количественной оценке возможных исходов, определяемой на основе составных элементов события, как, например, в лотереях или игре в кости.
Так или иначе, азартные игры встречаются практически повсеместно и не зависят от преобладающей доктрины — детерминизма или недетерминизма.
На следующей фотографии изображены две игральные кости с индонезийского острова Ломбок. Они в действительности представляют собой волчки, на которых нарезаны четыре грани, как на игральных кубиках. Во время игры волчки вращаются и падают на одну из четырех граней. Однако не все грани волчка различны — на двух противоположных гранях изображена монета, на двух других — инкрустированы кусочки перламутра. При броске любой из этих двух костей возможны всего два исхода. Обозначим их П (перламутр) и М (монета).
Игральные кости с острова Ломбок (Индонезия).
На одной из игральных костей на гранях М выгравирована еще одна фигура — медный выпуклый диск. Равновероятны ли возможные исходы? Изучив форму игральных костей, можно предположить, что нет: одни грани тяжелее других, поэтому вероятность выпадания граней отличается. Но окончательный ответ можно получить только одним способом: раскрутить игральную кость несколько раз и зафиксировать результаты. Из 20 бросков М выпало только в двух случаях. Тот, кто ставит на М, будет выигрывать редко. После нескольких бросков становится понятно, что эта игральная кость не удовлетворяет основному требованию азартной игры — возможные исходы неравновероятны. Делать ставку в такой игре нет смысла, так как исход можно предугадать с уверенностью в 80 %.
Дадду — азартная игра в кости, в которую играют в Индонезии, а также в Малайзии, где она называется селебор. В дадду играют двумя одинаковыми кубиками, грани которых раскрашены следующим образом.
В игре участвуют четыре игрока, которых мы обозначим А, В, С и D. Кости переходят от игрока к игроку по часовой стрелке. Возможны три исхода: оттонг (выигрыш: В), мате (проигрыш: П) или эланг (переход хода: X).
Игру начинает игрок А. Если А выигрывает (В), то бросает кости снова. Если А проигрывает (П) или же не выигрывает и не проигрывает (X), то ход переходит к В. Если В выигрывает (В), то А проигрывает, если В проигрывает (П), А выигрывает (В). Если В не выигрывает и не проигрывает (X), кости возвращаются игроку А. Игра продолжается до тех пор, пока один из двух игроков, А или В, не проиграет. Далее в игру вступает С, и победитель играет с ним. После того как в этой паре определится победитель, он играет с D, и так далее. Игра может продолжаться бесконечно — условия ее завершения определяют сами игроки. Игроки делают ставки, как правило, равной величины.
- Предыдущая
- 27/32
- Следующая