Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Ваш радиоприемник - Сворень Рудольф Анатольевич - Страница 3


3
Изменить размер шрифта:

Много условных обозначений вы встретите дальше, в частности, на рисунках 7, 13, 19, 21, 24 и др.

* * *

Если в стакан кипятку бросить кусок льда, то произойдет своего рода нейтрализация, в стакане не останется ни льда, ни кипятку. Они превратятся в обычную воду комнатной температуры. Подобно этому нейтрализуют друг друга одинаковые положительный и отрицательный электрические заряды.

Если каким-то образом объединить электрон (—) и протон (+), то полученный «гибрид» вообще не будет обладать электрическим зарядом. Разумеется, наше сравнение весьма условно. В частности, никаким разделением воды на две части нельзя вновь получить лед и кипяток, в то время как электрический заряд — свойство неисчезающее.

В нормальных атомах вокруг ядра «бегает» столько же электронов, сколько протонов в этом ядре, а поэтому число единичных положительных и отрицательных зарядов одинаково. Такие атомы, так же, как и состоящие из них вещества, нейтральны, то есть в целом не обладают электрическими свойствами. Но стоит только убрать с орбиты один-два электрона, как равновесие нарушится и весь атом в целом получит положительный заряд.

При этом, конечно, появится положительный электрический заряд и у вещества, состоящего из таких наэлектризованных атомов. Натирая куском шерсти гребенку, мы просто вырываем из ее атомов электроны, которые сразу же переходят на шерсть. Оба предмета электризуются: гребенка приобретает положительный заряд, шерсть — отрицательный.

Простейшие опыты показывают, что обладающие электрическим зарядом тела и частицы — их для краткости называют просто электрическими зарядами — взаимодействуют друг с другом. Одноименные заряды (+ и + или — и —) отталкиваются, а разноименные (+ и —) притягиваются (рис. 1, а). Естественно, притягиваясь или отталкиваясь, заряды могут передвигаться в пространстве.

Во время движения электрический заряд приобретает еще одно замечательное свойство, которое называют намагниченностью, или магнетизмом (рис. 1, б). Под действием магнитных свойств тела и частицы тоже взаимодействуют друг с другом — притягиваются либо отталкиваются подобно электрическим зарядам. Пример: два движущихся электрона будут отталкиваться под действием электрических зарядов, но одновременно могут притягиваться под действием магнитных сил.

Рис. 1

Где бы вы ни встречали магнитные свойства — в стрелке компаса, электромоторе или, наконец, на полюсах нашей планеты, — знайте, что эти свойства всегда являются следствием тех или иных движений электрических зарядов. С другой стороны, перемещая относительно магнита нейтральное в электрическом отношении тело, например кусок провода, можно вызвать его электризацию (стр. 34). Все это говорит о том, что электрические и магнитные явления тесно связаны друг с другом и являются различными проявлениями единой электромагнитной формы существования материи.

Вспомнив «азы» электротехники, мы можем переходить к более конкретным вещам. Сейчас разговор пойдет о работающих зарядах.

Работа всегда связана с движением — мощные потоки воды вращают рабочее колесо гидротурбины, выбрасываемые ракетным двигателем газы выталкивают на орбиту многотонный космический корабль, удар камня о камень высекает искру.

А нельзя ли заставить движущиеся электрические заряды выполнять полезную работу? Конечно, можно! Удобнее всего это сделать в так называемой электрической цепи, примером которой может служить обычный карманный фонарик (рис. 2).

Рис. 2

Любая электрическая цепь содержит нагрузку, соединительные провода и генератор или, как его еще называют, источник тока. Основной процесс в генераторе — это осуществляемая тем или иным способом электризация. В батарейке, например, электризуются два рабочих тела, два электрода — цинковый и угольный. Химические реакции «вырывают» электроны из атомов угля и перебрасывают их в цинк. В результате такой электризации на каждом из электродов появляется весьма ощутимая сила, способная притягивать либо отталкивать заряды, то есть способная заставить их двигаться… Она так и называется — электродвижущая сила, или сокращенно э. д. с. Единицей длины служит метр, единицей веса — грамм, а единицей э. д. с. — вольт (в). Если нужно, используют более мелкие единицы — милливольт и микровольт, равные соответственно тысячной и миллионной доле вольта (стр. 14).

Величина э. д. с. измеряется специальным прибором — вольтметром, который имеет два входных провода. Один из них подключают на «+» батареи, другой на «—». Вольтметр устроен так, что показывает ту силу, с которой «+» выталкивает, а «—» притягивает единичный положительный заряд.

Если говорить более строго, то вольтметр показывает работу, которую сможет выполнить заряд в один кулон на пути от «+» к «—». При э. д. с. 1 в каждый кулон зарядов, проходящих по цепи, выполняет работу в 1 джоуль (стр. 22).

Второй важный элемент электрической цепи — нагрузка, в нашем примере — лампочка. Сюда приходят заряды от генератора и здесь они совершают полезную работу. Но прежде чем говорить о том, как это делается, несколько слов о третьем элементе цепи — проводах, соединяющих генератор с нагрузкой (в карманном фонаре их роль выполняет металлический корпус и жестяные лепестки — выводы батарейки).

Зачем нужны провода? Почему от генератора к нагрузке заряды не могут двигаться без них прямо по воздуху? Здесь появляется слово, которое будет неотступно следовать за нами на всем пути знакомства с приемником. Слово это — сопротивление.

Сопротивлением, а точнее электрическим сопротивлением, называют способность той или иной среды противодействовать движению зарядов. Характер этого противодействия может быть самым различным. Летит электрон, сталкивается с встречным атомом и останавливается — сопротивление. Пролетает электрон вблизи сильного магнита и сворачивает со своего пути — опять сопротивление. Или вот еще пример противодействия. Несколько электронов вылетело из отрицательного электрода батарейки (там они в избытке!) и образовали вокруг него так называемое электронное «облако». Это облако своим отрицательным зарядом отталкивает назад другие электроны и буквально не дает им выйти из электрода.

Из-за различных видов противодействия свободный, безостановочный пробег зарядов в любом веществе весьма мал. И трудно сказать, каким образом удалось бы использовать электрическую энергию, если бы в природе не было целой группы веществ, получивших общее название проводников.

Вообразите, что вам нужно пройти по длинному коридору, беспорядочно заваленному столами, ящиками, стульями и другими громоздкими вещами. Сделав несколько шагов, вы, конечно, устанете и, наверное, даже остановитесь. Это немного напоминает движение единичного заряда в воздухе или другой подобной среде.

А теперь другая картина. Тот же коридор, с таким же «большим сопротивлением». Но на этот раз вы будете преодолевать его не в одиночку, а вместе с несколькими товарищами. Они разместятся равномерно вдоль всего коридора и по команде начнут двигаться в одну и ту же сторону. Вскоре после того, как вы войдете в коридор, из него уже выйдет тот ваш товарищ, который стоял ближе других к выходу, и, если не задумываться над тем, кто вошел, а кто вышел, то можно будет считать, что человек прошел через коридор. Такое коллективное преодоление препятствий напоминает то, что происходит с электронами в проводниках.

К числу проводников относятся металлы, уголь, графит, некоторые растворы солей, кислот, газы в особом, ионизированном, состоянии. Отличительная черта всех проводников — наличие свободных электрических зарядов. Напомним, что свободными заряды называют потому, что они могут свободно перемещаться в пространстве под действием каких-либо сил, например, тепловых или электрических. Иногда это свободные «вырвавшиеся» из своих атомов электроны (рис. 3), иногда и сами атомы с недостающими или, наоборот, лишними электронами. Такие атомы называют положительными и отрицательными ионами (рис. 3).