Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Том 9. Загадка Ферма. Трехвековой вызов математике - Виолант-и-Хольц Альберт - Страница 16
1 + 2 = 3 является простым, следовательно,
(1 + 2)·2 = 3·2 = 6 — совершенное число.
1 + 2 + 4 = 7 является простым, следовательно,
(1 + 2 + 4)·4 = 7·4 = 28 — совершенное число.
1 + 2 + 4 + 8 = 13 не является простым, поэтому мы пропускаем его.
Далее
1 + 2 + 4 + 8 + 16 = 31 является простым, следовательно,
(1 + 2 + 4 + 8 + 16)·16 = 31·16 = 496 — совершенное число.
1 + 2 + 4 + 8 + 16 + 32 = 63 не является простым, поэтому мы пропускаем его.
Наконец, 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 — простое, следовательно,
(1 + 2 + 4 + 8 + 16 + 32 + 64)·64 = 127·64 = 8128 — совершенное число.
С помощью этой формулы действительно можно найти первые четыре совершенных числа. Существует и другая, более простая формула для нахождения совершенных чисел. Нетрудно видеть, что если мы складываем степени двойки, начиная с нулевой и не пропуская ни одной, то результатом будет следующая степень двойки минус один, иными словами,
1 + 2 = 3 = 4–1 = 22 — 1;
1 + 2 + 4 = 7 = 8–1 = 23 — 1;
1 + 2 + 4 + 8 = 15 = 16 — 1 = 24 — 1.
И так далее. Таким образом, мы можем преобразовать формулу Евклида и записать ее в современной математической нотации:
6 = (22 — 1)·2
28 = (23 — 1)·22
496 = (25 — 1)·24
8128 = (27 — 1)·26.
И всякий раз, когда 2n — 1 простое число, (2n — 1)·2n-1 будет совершенным числом.
Предположения о совершенных числах
Математики Античности, которым были известны первые четыре совершенных числа, выдвигали самые разнообразные предположения. Например, можно заметить, что значение n для первых четырех простых чисел является членом последовательности простых чисел 2, 3, 3, 7. Возникает соблазн предположить, что следующим совершенным числом будет (211 — 1)·210, но это не так, потому что 211 — 1 = 2047 = 23·89. Это число не является простым, следовательно, n = 11 не соответствует совершенному числу.
Также было обнаружено, что первое совершенное число имеет одну цифру, второе — две, третье — три и так далее. Следовательно, считалось, что пятое совершенное число будет иметь пять цифр. Но это не так, потому что пятым совершенным числом является (213 — 1)· 212 = 8191·4096 = 33 350 336, которое имеет восемь цифр.
Древние также заметили, что последние цифры совершенных чисел чередуются: 6, 8, 6, 8, 6. Следовательно, шестое совершенное число должно заканчиваться на 8. Но и это предположение не подтвердилось, так как шестое совершенное число равно (217 — 1)·216 = 131 071·65 536 = 8 589 869 056 и заканчивается на 6.
Но не все предположения древних оказывались ошибочными. Они предполагали, что все совершенные числа будут четными и что с помощью данной формулы можно будет найти их все. Это очень легко предположить, но крайне сложно доказать. Лишь в XVIII веке Леонард Эйлер привел первое доказательство того, что подобным образом можно получить все четные совершенные числа. Следовательно, было доказано, что все совершенные числа оканчиваются на 6 или на 8, но эти цифры не чередуются. Но до сих пор неизвестно, существуют ли нечетные совершенные числа. Было лишь доказано, что если и существует нечетное совершенное число, то оно должно быть больше 10300. Однако это не доказывает, что нечетных совершенных чисел не существует, ведь что значат несколько триллионов по сравнению с необозримым бесконечным рядом натуральных чисел?
Портрет Леонарда Эйлера кисти Эмануэля Хандманна. Этот математик XVIII века совершил важные открытия, касающиеся совершенных и простых чисел.
Также была выдвинута гипотеза, что совершенных чисел бесконечно много, но пока это не удалось доказать. Постоянно объявляют о том, что открыто новое простое число Мерсенна. Каждому такому числу соответствует совершенное число. В настоящее время сотни добровольцев участвуют в проекте GIMPS (Great Internet Mersenne Prime Search), цель которого — поиск простых чисел Мерсенна. Участники проекта загружают на свои компьютеры программу, написанную Джорджем Вольтманом.
Результат коллективных усилий был объявлен 23 августа 2008 года — было найдено самое большое на тот момент простое число Мерсенна, 243112609 — 1. Ему соответствует самое большое из известных совершенных чисел, 243112608·(243112609 — 1), содержащее 25956376 цифр! 12 июня 2009 года было найдено еще одно простое число Мерсенна, на этот раз несколько меньшее: 242643801 — 1. Ему соответствовало сорок шестое совершенное число, равное 242643800·(242643801 — 1), состоящее из 25674128 цифр! И хотя они встречаются все реже, и каждое следующее намного больше предыдущего, никто не знает, действительно ли их на самом деле бесконечное множество. Участники проекта GIMPS продолжают поиски.
* * *
ПРОСТЫЕ ЧИСЛА ФЕРМА И ПОСЛЕДУЮЩИЕ ОТКРЫТИЯ
В 1650 году Ферма представил математическому сообществу одну из самых знаменитых задач в истории: нужно было показать, что все числа вида
являются простыми. Все указывало на то, что предположение Ферма было верным. Для n = 0 получим F0 = 3 — простое число. Для n = 1 получим F1 = 5 — тоже простое число. F2 = 17, F3 = 257 и F4 = 65 537 — все это простые числа. Лишь в 1732 году Эйлер показал, что F5 = 4294967297 = 641·6700417, следовательно, оно не является простым. Затем пришлось дождаться 1880 года, когда Ландри разложил на множители F6 = 274177·67280421310721 настоящий подвиг для эпохи, когда все вычисления производились вручную. В 1975 году Моррисон и Бриллхарт сделали еще один шаг вперед, разложив на множители F7 = 340282366920938463463374607431768211457 = 59649589127497217·5704689200685129054721, на этот раз уже с помощью компьютера. До сегодняшнего дня не найдено больше ни одного простого числа Ферма, но также не доказано, что других таких чисел не существует. Однако разложить подобные числа на простые множители — задача, достойная титанов. Зачем нам знать, являются простыми числа подобного вида или нет? Один из ответов дал Гаусс, доказав, что правильный многоугольник можно вписать в окружность с помощью циркуля и линейки только тогда, когда разложение числа его сторон на простые множители содержит только двойки и разные простые числа Ферма.Например, с помощью циркуля и линейки в окружность можно вписать треугольник (3 стороны), квадрат (4 = 22 стороны), пятиугольник (5 сторон), шестиугольник (6 = 2·3 сторон), восьмиугольник (8 = 23 сторон) и десятиугольник (10 = 2·5 сторон), но не семиугольник (7 не является простым числом Ферма) и не девятиугольник (9 = З2 равно произведению равных простых чисел Ферма). Хотя для этих случаев существуют приближенные построения, точное построение невозможно.
Портрет Карла Фридриха Гэусса.
* * *
АРАБСКАЯ ЗАДАЧА О ЖЕМЧУЖИНАХ
Мальба Тахан (этот псевдоним носил Жулио Сезар де Мелло и Соуза) в своей книге «Человек, который считал», изданной в 1949 году, предлагает очень красивую задачу. «Некий раджа оставил дочерям некоторое число жемчужин и повелел разделить их так: старшей дочери полагалась одна жемчужина и одна седьмая часть оставшихся, второй — две жемчужины и седьмая часть оставшихся, третьей — три жемчужины и одна седьмая часть оставшихся, и так далее для всех остальных дочерей. Младшие дочери обратились к судье, заявив, что этот способ совершенно несправедлив по отношению к ним. Судья славился умением решать задачи и быстро ответил, что просительницы ошибаются и что распределение, предложенное раджой, совершенно справедливо и честно. Судья был прав. После того как были поделены все жемчужины, оказалось, что каждой из дочерей досталось одинаковое число жемчужин. Сколько же было жемчужин и сколько дочерей было у раджи?»
Решение очень простое: жемчужин было 36, дочерей — 6. Первой дочери досталась одна жемчужина и одна седьмая от оставшихся 35, то есть 5. Получается, всего ей полагалось 6 жемчужин, осталось 30. Второй дочери досталось 2 жемчужины и седьмая часть от 28 оставшихся, то есть 4. Она получила 6 жемчужин, осталось 24. Третьей досталось 3 жемчужины и одна седьмая от 21 оставшейся, то есть еще 3, осталось 18. Четвертой досталось 4 из этих 18 и еще седьмая часть от 14, то есть 2. Следовательно, на ее долю также пришлось 6 жемчужин. Пятой дочери досталось 5 из оставшихся двенадцати и одна седьмая от 7 жемчужин, то есть 1, а всего 6. Младшей дочери достались 6 оставшихся жемчужин. Здесь красота задачи сочетается с красотой ее решения. Наследство в 36 драгоценных жемчужин досталось 6 прекрасным девушкам, 6 — совершенное число, а 36 — квадрат совершенного числа.
- Предыдущая
- 16/34
- Следующая