Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Том 27. Поэзия чисел. Прекрасное и математика - Дуран Антонио - Страница 25


25
Изменить размер шрифта:

Заметьте, что знаменатели этих дробей — квадраты натуральных чисел, а многоточие означает, что число слагаемых бесконечно велико. Математики называют сумму бесконечного числа слагаемых рядом. Сумма ряда — это число, к которому мы приближаемся по мере увеличения числа слагаемых так, что разность между этим числом и суммой слагаемых уменьшается с увеличением их количества.

Представленный выше бесконечный ряд содержит некоторый контекст, о котором будет полезно рассказать.

История этого ряда такова. В марте 1672 года юный Лейбниц, которому было двадцать с небольшим, прибыл в Париж. Он хотел улучшить свое математическое образование и углубить знания, которые на тот момент были весьма скудными. Спустя несколько месяцев Лейбниц придумал хитроумный метод вычисления сумм бесконечных рядов. Его метод заключался в записи слагаемых в виде разности с последовательным сокращением членов. Ввиду врожденного оптимизма и недостатка математических знаний Лейбниц посчитал, что открытый им способ позволяет найти сумму произвольного ряда. Не будем забывать, что, по мнению Лейбница, мы жили в лучшем из миров, причем он произнес эти слова вскоре после окончания Тридцатилетней войны.

Слева — портрет Лейбница работы Иоганна Фридриха Вентцеля, около 1700 года. Справа — портрет Гюйгенса, выполненный Каспаром Нечером в 1671 году.

Оптимизм Лейбница по отношению к его методу вычисления сумм рядов только усилился, когда он узнал об открытии Христиана Гюйгенса, одного из авторитетнейших ученых. Гюйгенс родился в Голландии и к описываемому моменту уже несколько лет работал в Парижской академии наук. Чтобы проверить метод Лейбница, Гюйгенс предложил ему найти сумму ряда чисел, обратных треугольным. Треугольные числа имеют вид n·(+ 1)/2. Своим названием они обязаны пифагорейцам и их геометрическому толкованию чисел: треугольное число — это число кружков, которые можно расставить в форме равностороннего треугольника. Таким образом, Лейбницу требовалось вычислить сумму ряда: 1 + 1/3 + 1/6 + 1/10 + 1/13 + 1/21 + 1/28 + …

По случайному совпадению этот ряд — один из немногих, для которых способ, открытый Лейбницем, позволяет найти верное значение суммы (см. врезку):

1 + 1/3 + 1/6 + 1/10 + 1/13 + 1/21 + 1/28 + … = 2.

В 1673 году Лейбниц посетил Лондон, где запомнился как наивный оптимист и дилетант. С математической точки зрения его поведение не раз сослужило ему плохую службу — англичане припомнили некоторые эпизоды сорок лет спустя, в разгар дискуссии с Ньютоном об авторстве анализа бесконечно малых.

По возвращении в Париж Лейбниц получил письмо от Джона Коллинза, который предложил ему найти сумму чисел, обратных квадратам натуральных чисел:

1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + …

Коллинза нельзя было назвать великим математиком, он был скорее посредником между британскими математиками и учеными континента. Он не обладал достаточными способностями, чтобы понять истинную сложность задачи, поэтому весьма вероятно, что это предложение было выдвинуто более авторитетными математиками, к примеру Джеймсом Грегори или самим Исааком Ньютоном. Как бы то ни было, тот, кто со злым умыслом предложил Лейбницу эту задачу, мог сказать ему, что вычислить искомую сумму вряд ли будет слишком сложно, так как искомые слагаемые были почти равны членам ряда, сумму которого Лейбницу удалось найти: в одном случае слагаемые имели вид 2/(n·(n + 1)), в другом — 1/(n·n).

* * *

ВЫЧИТАЙ, КОГДА ХОЧЕШЬ СЛОЖИТЬ

Как мы уже говорили, метод Лейбница заключался в том, что при вычислении суммы ряда каждый член записывался в виде разности так, что искомую сумму было нетрудно вычислить путем последовательного сокращения членов. Именно так сокращаются числа, обратные треугольным числам. В самом деле, число, обратное треугольному числу 2/(n·(+ 1)), — это разность 2/n и 2/(n + 1):

Приняв = 1, 2, 3, 4…, получим: 1 = 2 – 1; 1/3 = 1 – 2/3; 1/6 = 2/3 - 2/4; 1/10 = 2/4 - 2/5; 1/15 = 2/5 - 2/6; 1/21 = 2/6 - 2/7 и так далее. Сложив указанные дроби, заметим, что вычитаемое в каждой разности и уменьшаемое в следующей разности сокращаются и в конце концов остается лишь уменьшаемое первой разности: 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + … = 2.

* * *

Однако найти сумму ряда не удалось ни Лейбницу, ни его ученикам, братьям Иоганну и Якобу Бернулли. Не сохранилось документальных свидетельств того, что этой задачей занимались Грегори или Ньютон, однако это не означает, что они обошли ее своим вниманием — возможно, их, как и других математиков, постигла неудача.

Прошло почти полвека, прежде чем Леонарду Эйлеру удалось найти сумму этого ряда. Идея, которую использовал Эйлер для сложения чисел, обратных квадратам натуральных, очень проста. Отправная точка его рассуждений такова: рассмотрим произведение вида (1 – 2z2)·(1 – 5z2)·(1 – 6z2), раскроем скобки и приведем подобные слагаемые:

(1 – 2z2)·(1 – 5z2)·(1 – 6z2) = 1 - 13z2 + 52z4 - 60z6.

* * *

ЛЕОНАРД ЭЙЛЕР (1707–1783)

Эйлер был одним из величайших математиков всех времен и, вне всяких сомнений, лучшим в XVIII веке. Он родился в 1707 году в Базеле, окончил местный университет, брал частные уроки у Иоганна Бернулли — одного из учеников Лейбница.

В 1727 году он переехал в Санкт-Петербург, с 1731 по 1741 год был членом Петербургской академии наук, затем работал в Пруссии и был избран членом Берлинской академии наук. Несмотря на непростые отношения с прусским королем Фридрихом II, Эйлер прожил в Берлине 25 лет и в итоге возглавил академию наук. По словам Фридриха II, усилиями которого Берлин стал одним из культурных центров Европы, Эйлеру недоставало блеска, таланта и элегантности. Эйлер был простым человеком, лишенным качеств, необходимых для «салонной жизни», которую так любил король. В одном из писем к Вольтеру Фридрих II назвал Эйлера «огромным циклопом геометрии» — злая шутка о математике, который в 1738 году ослеп на один глаз. После Берлина Эйлер вновь вернулся в Санкт-Петербургскую академию наук и умер в Санкт-Петербурге в 1783 году.

О влиянии Эйлера на математику последующих эпох лучше всего скажет классическая фраза Лапласа: «Читайте, читайте Эйлера — он учитель всех нас!». Или процитируем Гаусса: «Изучение трудов Эйлера остается лучшей школой в различных областях математики и не может быть заменено ничем другим».

* * *

Нетрудно видеть, что число, которое умножается на z2 в полученном выражении, равно сумме чисел, на которые умножается z2 в левой части равенства. Также нетрудно показать, что это соотношение верно для любого числа сомножителей в этом произведении. Эйлер понял: все, что верно для конечных произведений и сумм, верно и для бесконечных. Иными словами, если мы запишем:

(1 - az2)·(1 - bz2)·(1 - cz2)·… = 1 - Az2 + Bz4 - Cz6 +…,

то A = а + Ь + с + …

Далее Эйлер ввел в игру функцию синуса. Синус и косинус — две основные тригонометрические функции. Они определяются очень просто. Изобразим угол х на координатной плоскости следующим образом: одной из сторон угла будет горизонтальная ось, вторая сторона угла будет иметь длину, равную 1. Синус определяется как длина проекции этой стороны угла на вертикальную ось, косинус — как длина проекции этой стороны на горизонтальную ось, что показано на следующем рисунке.