Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Том 27. Поэзия чисел. Прекрасное и математика - Дуран Антонио - Страница 13
Форму золотой спирали имеют раковины наутилуса, ураганы и галактики.
Золотое сечение присутствует в природе повсеместно. Оно привлекало математиков, художников, архитекторов и музыкантов. Обратимся к творчеству Дюрера. Из всех художников Возрождения он, возможно, лучше всех разбирался в математике. Все, что Дюрер знал о возведении городских стен и крепостей, об использовании циркуля и угольника для измерения размеров твердых тел, о пропорциях человеческого тела и о форме букв алфавита, он изложил во множестве книг, напечатанных после его смерти. Большую часть математических знаний Дюрер получил в Италии. По рекомендации венецианского художника Якопо де Барбари он в 1506 году отправился в Болонью, где постигал тайную науку у неизвестного наставника. Многие считают, что этим учителем был монах-францисканец Лука Пачоли, который в 1494 году составил большую математическую энциклопедию XV столетия. До какой степени Дюрер проник в тайны изученной им науки, в которой золотое сечение было заветной формулой идеальных пропорций человеческого тела, можно судить по его прекрасным картинам, где изображены обнаженные Адам и Ева. Оцените разницу между головастым Адамом и пышнотелой Евой на гравюрах Дюрера 1504 года (сегодня они хранятся в венской галерее Альбертина) и ими же, прекрасными и стройными, на картинах 1507 года (они выставлены в мадридском музее Прадо).
Чему Дюрер научился за три года с момента создания гравюры слева до написания картины справа? Чем вызвана эта разница в пропорциях тел Адама и Евы на его картинах?
Как показал Гурвиц, золотое сечение задается иррациональным числом, которое хуже всего описывается рациональными дробями: для любого числа с > √5 справедливо неравенство |Ф — p/q| > 1/(с·q2), за исключением некоторых дробей p/q, при этом их число всегда будет конечным.
Донья Роса — Мартин Марко, Форд — Дирихле и Гурвиц
Вряд ли в романе «Улей» найдется два персонажа, которые бы внешне отличались больше, чем донья Роса и Мартин Марко. Она — полная, прожорливая, алчная и мизантропичная, он — худой, голодный, бездомный и приветливый. Эти два персонажа сталкиваются, когда донья Роса приказывает официанту вышвырнуть Мартина Марко из ее кафе за то, что тот не заплатил по счету. Хозяйка кафе указывает официанту, как нужно поступить: «На улицу выставить поаккуратней, а там — пару добрых пинков куда придется. Хорошенькое дело!» Тем не менее официант не стал наказывать Мартина Марко, поэтому ему ничего не оставалось, кроме как соврать донье Росе:
«— Всыпал ему?
— Да, сеньорита.
— Сколько?
— Два.
Хозяйка щурит глазки за стеклами пенсне, вынимает руки из карманов и гладит себя по лицу, где из-под слоя пудры пробиваются щетинки бороды.
— Куда дал?
— Куда пришлось, по ногам.
— Правильно. Чтоб запомнил. Теперь ему в другой раз не захочется воровать деньги у честных людей».
Столь же непохожими, как донья Роса и Мартин Марко, кажутся окружности Форда и рациональные приближения иррациональных чисел, описываемые теоремами Дирихле и Гурвица. Окружности Форда точны, элегантны и гармоничны, дроби Дирихле и Гурвица — шокирующие, полные секретов. Кажется, что эти понятия отражают два очень далеких друг от друга аспекта математики.
Однако в хороших романах часто случается так, что два далеких друг от друга персонажа воплощают дополняющие друг друга противоположности, составляющие одну из граней человеческой природы. Так же часто два математических результата, на первый взгляд далекие друг от друга, оказываются выражениями одного и того же математического явления.
Таковы касательные окружности Форда и рациональные приближения иррациональных чисел: первое есть не более чем геометрическое представление второго, как если бы хитросплетения теоремы Гурвица выкристаллизовались в четком и прозрачном изображении — в окружностях Форда.
Если читатель посмотрит на иллюстрацию на странице 50, он увидит, что это не что иное, как наглядное представление теоремы Гурвица. В самом деле, изобразим иррациональное число на числовой оси и проведем через соответствующую ему точку прямую, перпендикулярную числовой оси, как показано на следующем рисунке. Всякий раз, когда эта прямая будет пересекать окружность Форда (допустим, окружность, соответствующую рациональному числу p/q), разница между а и p/q обязательно будет меньше, чем радиус окружности, то есть меньше, чем 1/(2·q2): |a — р/q| < 1/(2·q2).
Как мы уже показали, окружности Форда, касающиеся окружности, которая соответствует дроби р/q, образуют последовательность, которая неизбежно приближается к р/q и в итоге «кусает» ее (см. рис. на стр. 51). Таким образом, если прямая, проведенная через точку, обозначающую иррациональное число а, пересекает окружность Форда, соответствующую дроби р/q, то она пересечет и другую окружность, касающуюся этой и расположенную под ней (см. следующий рисунок), а также окружность, расположенную под этой, и так далее. Отсюда следует, что прямая, соответствующая иррациональному числу, пересечет бесконечное множество окружностей Форда. Таким образом, существует бесконечное множество дробей р/q, удовлетворяющих неравенству |а — p/q| < 1/(2·q2). Это необычное следствие особого расположения окружностей Форда лежит на полпути между теоремами Дирихле и Гурвица, так как полученная нами константа равна 1/2, а согласно теоремам Дирихле и Гурвица она равняется 1 и 1/√5.
С помощью окружностей Форда также можно получить оптимальное значение этой константы, описываемое теоремой Гурвица. В самом деле, на верхнем рисунке на стр. 50, помимо окружностей Форда, представлены и другие фигуры — криволинейные треугольники, заключенные между любыми тремя касательными окружностями. Эти треугольники также обладают очень важными свойствами. Так, первая координата всех трех вершин подобных треугольников является рациональным числом. Рассмотрим криволинейный треугольник, образованный касательными окружностями Форда, которые соответствуют дробям p/q, p2/q2 и р3/q3. Обозначим вершины этого треугольника через А, В и С. Пусть А1 — первая координата вершины А, В1 — первая координата вершины В, С1 — первая координата вершины С. Нетрудно видеть, что
Так как первые координаты вершин треугольника — рациональные числа, прямая, проведенная через точку, соответствующую иррациональному числу а на числовой прямой, пересечет не только бесконечное множество окружностей Форда, но и бесконечное число криволинейных треугольников. Если большая из трех окружностей, образующих криволинейный треугольник, расположена справа, то в зависимости от значений координат А и В1 (в зависимости от того, какая из них больше) эти треугольники будут иметь один из двух различных видов, как показано на рисунках.
- Предыдущая
- 13/34
- Следующая