Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Том 12. Числа-основа гармонии. Музыка и математика - Арбонес Хавьер - Страница 24
* * *
НЕТ — ТРИДЕКАФОНИИ!
Может показаться забавным, что Шёнберг, создатель додекафонии, системы из 12 звуков, страдал оттрискаидекафобии — боязни числа 13. Причины этой фобии неизвестны. По-видимому, она появилась еще в древние времена, так как еще викинги избегали «чертовой дюжины», а в христианской традиции это число связывается с Иудой, который был тринадцатым на Тайной вечере. В древней Персии это число ассоциировалось с хаосом.
Боязнь числа 13 порой достигает невероятных размеров. Так, во многих городах, где улицы пронумерованы, нет улицы под номером 13; во многих зданиях нет 13-го этажа. В «Формуле-1» ни один автомобиль не имеет номер 13. Американского актера Стэна Лорела из знаменитого дуэта Лорела и Харди на самом деле звали Стэн Джеферсон (13 букв); он сменил фамилию из-за боязни числа 13. Некоторые музыканты также демонстрировали по меньшей мере предубеждение к этому числу: американец Джон Мэйер записал 14 композиций для своего альбома Room for Squares, но композиция под номером 13 содержит лишь две секунды тишины, а в нумерации композиций на этом альбоме число 13 пропускается.
Арнольд Шёнберг родился 13 сентября 1874 года. Он изменил название своей оперы Moses und Aaron («Моисей и Аарон») на Moses und Aron, так как первый вариант названия содержал 13 букв. Он боялся умереть в год, кратный числу 13, и в 1950 году, когда ему исполнилось 76 лет (7 + 6 = 13), он впал в депрессию. Он умер в пятницу 13 июля 1951 года. В свою очередь Альбан Берг был одержим числом 23, которое считал фатальным. Тем не менее это число часто используется в его Лирической сюите: многие ее части имеют число тактов, кратное 23, равно как и темп метронома.
* * *
Серии
Чтобы достичь этой цели, в додекафонии используется ряд правил. Например, чтобы слушатель не заострял внимание на определенных нотах больше, чем на остальных, композиции должны содержать полные циклы из всех 12 нот. После того как была использована одна нота, ее можно использовать снова только тогда, когда будет завершен цикл из 12 нот.
Ноты циклов не располагаются в беспорядке — напротив, в основе каждой композиции лежит «серия» — четко упорядоченная последовательность из 12 звуков хроматической гаммы.
Однако серия — это не просто группировка звуков с целью их статистического подсчета, а эквивалент традиционного мотива. В этом смысле додекафония признает себя продолжателем западной музыкальной традиции. Изображенная ниже серия используется в Сюите ор. 25 Шёнберга — одном из первых произведений, в котором применена система из 12 звуков.
Композитор наряду с основной серией создает другие, связанные или производные серии. Они получаются с помощью преобразований, которые мы рассмотрели в главе 3: инверсии, ракохода и транспозиции.
Существует четвертое преобразование, популярное у некоторых композиторов, — поворот. Если мы представим серию в виде круга (соединив первую ноту с последней), поворот будет эквивалентен началу серии с любой из точек круга.
Может показаться, что додекафоническая запись не требует особого творчества, потому что в ней используются серии. Да, применение серий составляет саму суть додекафонии, но каждый композитор подстраивает их к своим потребностям. На основе серии композитор может использовать разнообразные приемы: запись нот серии в разных октавах и для разных инструментов; начало исходной или преобразованной серии до того, как закончено исполнение предыдущей; работа с производными сериями, составленными из фрагментов исходной, и так далее.
* * *
КАКОВО ЧИСЛО ВСЕХ ВОЗМОЖНЫХ СЕРИЙ?
Первой нотой серии может быть любая из 12 возможных. После того как мы выбрали первую ноту, следующую можно выбрать из 11 оставшихся. Таким образом, число возможных вариантов для первых двух нот равно 12·11. Третьей нотой может быть любая из десяти оставшихся. Таким образом, число вариантов для первых трех нот равняется 12·11·10. Продолжив рассуждения, получим, что общее число возможных различных серий равно 12·11·10·9·…·3·2·1 = 479001600. Это число называется факториал 12 и записывается как 12!
Факториал любого целого положительного числа п определяется как произведение всех целых положительных чисел от 1 до n. Таким образом, n! = n·(n — 1)·…·2·1.
Однако для додекафонических серий подсчет «различных по сути» мелодий выглядит несколько сложнее, так как в этом случае не должны учитываться транспозиции, инверсии, ракоходы и сочетания этих преобразований. Тщательные подсчеты показывают, что число различных серий равно 9 985 920.
* * *
Числовая и матричная форма
Традиционные партитуры, в которых используется нотный стан, подчиняются логике диатонической музыки. Одним из следствий этого является тот факт, что расстояние между соседними линиями нотного стана и промежутками между ними не всегда обозначает один и тот же музыкальный интервал. Иногда этот интервал состоит из двух полутонов (от ре до ми), иногда — из одного (от ми до фа). Из-за этого в додекафонической музыке используются альтерации. По этой причине, как видно из предыдущих примеров, инверсии и ракоходы додекафонических серий «не видны» на партитурах.
Серию также можно представить в числовом виде, что упрощает запись мелодии. При записи серий в числовом виде, как правило, выбирается исходная нота. В следующем примере исходной нотой является ми, которой присвоено значение 0. Далее последовательно нумеруются полутона: фа обозначается 1, фа диез — 2, соль — 3 и так далее.
При представлении серии в числовом виде для нахождения связанных серий можно использовать средства арифметики. Например, транспозиция серии получается прибавлением одного и того же числа k к каждому элементу серии:
Tk(s1, s2, …, s12) —> (s1 + k, s2 + k, …, s12 + k),
T0(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6),
T1(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (1, 2, 4, 10, 3, 0, 3, 11, 8, 9, 6, 7),
T2(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (2, 3, 5, 11, 4, 1, 6, 0, 9, 10, 7, 8),
…
T7(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (7, 8, 10, 4, 9, 6, 11, 3, 2, 3, 0,1),
…
T12(0, 1, 3, 9, 2, 11, 4, 10, 7, 8, 5, 6) —> (11, 0, 2, 8, 1, 10, 3, 9, 6, 7, 4, 5).
После 11 счет снова начинается с 0, точно так же как мы считаем часы: 8 часов утра плюс 7 часов равно 3 часам дня. В математике подобные операции на ограниченных множествах чисел называются модулярной арифметикой. В случае с додекафоническими сериями множество чисел имеет всего 12 элементов в интервале от 0 до 11. Число элементов множества называется модулем (в нашем случае модуль равен 12). В арифметике по модулю 12 число 13 эквивалентно числу 1. Записывается это так:
13
1 (mod 12).Все числа вида 12k + 1, где k — целое, эквивалентны 1:
25
1 (mod 12),37
1 (mod 12),49
1 (mod 12),- Предыдущая
- 24/31
- Следующая