Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Шаг за шагом. От детекторного приемника до супергетеродина - Сворень Рудольф Анатольевич - Страница 14


14
Изменить размер шрифта:

Рис. 28. Длина электромагнитной волны — это расстояние между двумя ближайшими точками, где электрическая (или магнитная) составляющая поля в один и тот же момент времени действует с наибольшей силой и в одинаковых направлениях. Длина волны тем меньше, чем больше частота переменного тока в передающей антенне.

Длина волны зависит от частоты переменного тока (f), который создает излучение: чем выше эта частота, тем чаще следует одна волна за другой, тем меньше расстояние между их «гребнями». Кроме того λ зависит и от скорости распространения волн: чем быстрее движется волна, тем меньше расстояние она успеет пройти за время одного периода (одного полного цикла) переменного тока в передающей антенне, тем, следовательно, ближе будет отстоять одна волна от другой.

Для электромагнитных волн зависимость между длиной волны λ и частотой f определяется следующими простыми формулами:

Здесь с — это скорость распространения электромагнитных волн (скорость света), равная 300 000 км/сек. Существуют и более простые для вычислений формулы (см. табл. на листе 50).

Электромагнитные волны длиной от нескольких миллиметров до нескольких километров обычно называют радиоволнами, так как именно они используются для радиосвязи, радиовещания, радиолокации и телевидения. Более короткие электромагнитные волны — это инфракрасные, световые, ультрафиолетовые, рентгеновские и гамма-лучи.

Поместим на пути радиоволн обычный проводник (его можно сразу же назвать приемной антенной), и они тотчас же «наведут» в этом проводнике переменный ток (рис. 29), который будет точной копией тока в передающей антенне, но, конечно, будет несравненно слабее его.

Рис. 29. Электромагнитные волны наводят в приемной антенне переменный ток и, таким образом, переносят от передатчика к приемнику определенную энергию.

Наведение тока в приемной антенне можно объяснить упрощенно тем, что под действием электрической составляющей поля электроны в проводнике упорядоченно перемещаются, как перемещались кусочки бумаги, попавшие в электрическое поле гребенки. В перемещении электронов принимает участие и магнитная составляющая поля, так как электрон, кроме электрического заряда, обладает еще магнитными свойствами, чем-то напоминая стрелку компаса.

Радиоволны непрерывно движутся мимо приемной антенны, и непрерывно меняется направление и сила воздействия электромагнитного поля на свободные электроны проводника. Поэтому-то и ток в приемной антенне изменяется с той же частотой, что и ток в антенне передатчика.

Итак, с помощью переменного тока в передающей антенне мы получили такой же (конечно, не по силе!) переменный ток в приемной антенне: электромагнитные волны помогли нам установить связь между этими антеннами без соединительных проводов.

Теперь наша задача — научиться использовать эту линию связи, научиться передавать по ней сообщения.

ПЕРЕДАЧА ИДЕТ

Казалось бы, что проще всего можно установить радиосвязь, включив микрофон в передающую антенну, а телефон — в приемную. Действительно, при разговоре будет меняться ток в цепи микрофона, в результате чего вокруг передающей антенны будут появляться электромагнитные волны. Эти волны наведут в приемной антенне, то есть в цепи телефона, соответствующий переменный ток, под действием которого будет колебаться мембрана.

На первый взгляд как будто бы все правильно. Однако практически такая система непригодна хотя бы потому, что для подобной линии радиосвязи пришлось бы строить передающие антенны высотой в десятки и сотни километров. При более коротких антеннах радиоволны будут излучаться настолько слабо, что ни о каком приеме их нельзя будет и думать.

Дело в том, что эффективность излучения радиоволн зависит от высоты передающей антенны и от частоты переменного тока: чем больше эта частота и чем выше антенна, тем эффективнее будет происходить излучение. В этом отношении передающая антенна немного напоминает обычный вентилятор, воздушный поток от которого будет тем сильнее, чем больше лопасти вентилятора и чем быстрее они вращаются. Сходство это, конечно, весьма условное, так как излучение электромагнитных волн и образование воздушного потока — совершенно разные физические процессы.

Теоретически подсчитано и практически подтверждено, что для эффективного излучения высота передающей антенны должна составлять не менее 5—10 % от длины волны. Еще лучше, если длина антенны будет равна половине или в крайнем случае четверти λ.

Теперь видно, какие огромные антенны пришлось бы строить для эффективного излучения на низких частотах, где длина волны лежит в пределах от 15 км (f = 20 кгц) до 15 000 км (f = 20 гц). Поскольку строить антенны высотой более 100–200 м сложно и дорого, то для радиосвязи и радиовещания, как правило, используют электромагнитные волны не длиннее 2000 м, то есть радиоволны, образованные переменным током с частотой выше 150 кгц (рис. 30).

Рис. 30. Для эффективного излучения радиоволн используют токи высокой частоты — обычно от 100 кгц до многих тысяч мегагерц. Радиовещательным станциям отведено четыре частотных участка, получивших название диапазонов длинных, средних, коротких и ультракоротких волн.

И хотя резкой границы никто не устанавливал, но все же частоты более 100–150 кгц занимают в радиотехнике особое положение и называются высокими частотами. Верхняя граница высоких частот, используемых для радиопередачи, простирается очень далеко. Так, например, в радиолокации и некоторых видах радиосвязи используются радиоволны длиной в несколько сантиметров, что соответствует частоте в несколько тысяч мегагерц, но и это еще не предел.

Эффективное излучение электромагнитных волн — это только одна из причин, заставивших использовать для радиосвязи токи высоких частот. Другое, пожалуй, еще более серьезное достоинство высокочастотной радиосвязи состоит в том, что она позволяет одновременно работать большому числу радиостанций, причем эти станции не мешают друг другу и в приемнике всегда можно выделить нужную нам станцию среди множества других.

Для того чтобы можно было в месте приема как-нибудь отличить сигналы одной станции от другой, каждой из них присваивается определенная частота. Как вы увидите дальше, если передающая станция работает на определенной и никем не занятой частоте (то есть излучает радиоволны вполне определенной длины), то сигналы этой станции можно выделить из бесчисленного множества других сигналов, которые появляются в антенне приемника под действием радиоволн, приходящих со всех сторон света.

Частоты соседних радиовещательных станций, то есть тех станций, которые ведут передачи для широкого круга радиослушателей, разносят на 10 кгц одну от другой (лист 53). Так, например, если какая-нибудь радиовещательная станция работает на частоте 500 кгц, то ближайшие к ней (соседние) станции могут работать на частотах 490 и 510 кгц. Частоты радиостанций, работающих на линиях служебной связи, особенно телеграфных, располагают значительно ближе друг к другу.

Для работы радиовещательных станций выделено четыре частотных участка, или, как принято говорить, четыре диапазона: длинных (ДВ), средних (СВ), коротких (КВ) и ультракоротких (УКВ) волн (лист 51).