Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Антология реалистической феноменологии - Коллектив авторов - Страница 147
Мы возвращаемся к изучению этого весьма часто обсуждавшегося вопроса не ради того, чтобы найти новую интерпретацию для аргументов элеатского диалектика, а также не для того, чтобы добавить к бесчисленным в прошлом попыткам опровержения еще одну, столь же мало удачную. В этой небольшой статье нет необходимости доказывать, что поставленная Зеноном проблема ни в коем случае не относится только к движению. Она касается времени, пространства и движения только в той мере, в какой в них имплицированы моменты бесконечности и непрерывности. Эта проблема с необходимостью имеет отношение ко всем областям, в которых оба эти момента играют какую-то роль, и поэтому ее значение носит гораздо более абстрактный характер, чем это обычно считается. Следовательно, все опровержения, касающиеся только проблемы движения, изначально идут по ложному пути. Это, по нашему мнению, относится к Ноэлю и Бергсону, а согласно другой позиции – также к Эвеллину.
§ 2. Аргументы Зенона
Согласно изложению Брошара, на статью которого мы ссылаемся в отношении всего, что касается интерпретации, четыре аргумента Зенона представлены в форме дилеммы. Два из них (Ахиллес черепаха и дихотомия) направлены против восприятия непрерывности и бесконечной делимости времени и пространства; два остальных (стрела и стадий) – против гипотезы конечности, которая характеризует пространство и время, как состоящие из неделимых конечных элементов.
Теперь обратимся к самим аргументам:
1. Дихотомия.
Движение невозможно. Ибо прежде чем объект движения достигнет цели своего пути, он должен пройти половину дистанции, и так далее до бесконечности, что на современном языке означает: движение предполагает сумму или синтез бесконечного числа элементов.
2. Ахиллес и черепаха.
Движение невозможно. Ведь более быстрый бегун никогда не сможет догнать бегущего медленнее. То есть, если бегущий медленнее в начале движения опережает более быстрого, то более быстрый, прежде чем он его догонит, должен с необходимостью сначала достичь точки, в которой более медленный бегун был в начале своего движения, и так далее до бесконечности. Хотя расстояние этого опережения постоянно сокращается, оно никогда не может стать равным нулю. В современной терминологии это означает: 1) Каждое физическое тело должно проходить бесконечное число точек (что можно выразить простой формулой). 2) Поскольку каждой точке пути Ахиллеса соответствует определенная точка пути черепахи и наоборот, то их количество с необходимостью должно быть равным. Поэтому невозможно, чтобы пройденный Ахиллесом за равное время путь был больше, чем путь, пройденный черепахой.
3. Летящая стрела в каждый момент и в каждой точке своего пути неподвижна. То есть если рассматривать это утверждение согласно финитистической гипотезе, что всякая длительность и всякая протяженность состоит из неделимых элементов (точек), то стрела должна постоянно и с необходимостью быть в состоянии покоя. Ведь в этих неделимых моментах и точках движение невозможно.
4. Стадий.
Три линии равной длины (состоящие из равного числа неделимых элементов) находятся в одном стадии. Одна из них неподвижна, две других движутся параллельно первой, но в противоположных направлениях. В этом случае, согласно финитистической гипотезе – «половина должна быть равна целому», как говорит Зенон. Поскольку в определенный, полагаемый неделимым момент один и тот же элемент пространства должен проходить мимо как одного, так и двух элементов пространства, а, следовательно, должен быть равным, как одному, так и двум таким элементам.
§ 3. Равноценность возможных интерпретаций
До сих пор мы следовали интерпретации Брошара. Но мы ни в коей мере не собираемся опираться только на нее. Мы отнюдь не утверждаем, что постигли единственно возможный смысл аргументов Зенона или аутентично воспроизвели его мысли. Тем более что, по нашему мнению, все четыре аргумента можно интерпретировать двояко – это зависит от того, рассматривать ли их на основе гипотезы конечности или гипотезы бесконечности.
1. Таким образом, если мы принимаем бесконечную делимость пространства и времени, то в случае летящей стрелы верным остается то, что каждому моменту времени должна соответствовать некая непрерывная точка пространства, каждому мгновению – отчетливо определенное пространственное положение стрелы. И поскольку, согласно этой гипотезе, ни момент пространства, ни момент времени не являются протяженными – ведь оба они только геометрические точки —, то в результате оказывается, что стрела в эти непротяженные моменты не может двигаться. И далее: так как настоящий момент времени всегда является лишь пограничной точкой между прошлым и будущим, то стрела должна была бы двигаться в этот единственно реальный момент настоящего. Итак, стрела не движется совсем. Мы получаем бесконечность положений в пространстве в бесконечности соответствующих им моментов времени, но движения нет, и даже – пока мы не осуществили синтез этой бесконечности отдельных моментов – нет непрерывного пути.
2. Теперь рассмотрим стадий. Бесконечная делимость времени и пространства отнюдь не устраняет того парадоксального факта, даже проявляя его с особой отчетливостью, что в некий определенный момент одна и только одна точка линии В, равно как и такая же точка линии С, проходят мимо некоторой определенной точки линии А, точно так же, как и мимо точки линии С, или соответственно, точки линии В. Некоторой точке О на линии В соответствуют в каждый момент одна и только одна точка на линии А, и одна и только одна точка на линии С – и все-таки линия С целиком проходит мимо точки О, а у линии А только половина. «Итак, половина равна целому»
3. Исследуем теперь аргумент «Ахиллес», напротив, полагая, что время и пространство состоят из ограниченного числа конечных элементов. Также не менее верно то, что в каждый данный момент времени определенные точки пути Ахиллеса и черепахи должны точно взаимно соответствовать. И здесь еще труднее, чем в случае гипотезы бесконечности понять, как из равного количества идентичных элементов могут складываться различные суммы.
4. Наконец, дихотомия с точки зрения финитистической гипотезы создает проблему, подобную рассмотренной в аргументе «Стадий». Рассмотрим последний, еще протяженный элемент; как таковой, он еще делим, а именно состоит из двух непротяженных элементов. Такое пространство представляет собой минимум, в котором движение вообще еще возможно; поскольку очевидно, что в непротяженном ничто не может двигаться. Объект движения пройдет это минимальное расстояние за промежуток времени, который состоит из одного-единственного неделимого момента. Но поскольку мы вправе делить пространство, то мы можем спросить: за какой интервал времени объект движения пройдет половину этого расстояния? Значит, будет необходимо делить надвое неделимый по условию этой гипотезы момент времени.
Мы считаем аргументацию Зенона абсолютно убедительной. Движение предполагает бесконечную делимость пространства и времени, а, следовательно, имплицирует сумму актуальной бесконечности элементов и моментов. Находящееся в движении тело проходит в конечном пространстве и конечном времени бесконечное количество точек. Точно то же демонстрирует нам совершенно строгий способ доказательства, согласно которому два тела, движущихся с различной скоростью, за одно и то же время проходят пути, состоящие из равного числа элементов. Впоследствии мы увидим, каким образом эти выводы могут рассматриваться в качестве доводов против возможности движения. Теперь мы хотим последовать теми же путями, посредством которых совершались попытки опровергнуть выводы Зенона.
§ 4. Финистическая гипотеза Эвеллина
Интерпретация стадия, которую мы привели в нашем втором параграфе, была объявлена Ноэлем[341] непротиворечивым аргументом против финитистической теории и вследствие этого вызвала ответ основного представителя этой теории, Эвеллина,[342] где он пытается опровергнуть эти возражения при помощи очень тонких и остроумных рассуждений. Эвелин снова начинает анализ стадия:
- Предыдущая
- 147/173
- Следующая
