Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Если бы числа могли говорить. Гаусс. Теория чисел - Лизана Антонио Руфиан - Страница 22
Неудивительно, что Гаусс посвятил свои последние годы улучшению этого результата в поисках более точной и лучше обоснованной с точки зрения математики формулы. Так возникла проблема вычисления вероятностей. Было очевидно, что по мере увеличения N вероятность найти простое число уменьшается. Идея состояла в том, чтобы воспользоваться вероятностями, основанными на выражении
1/ln(N)
Результат Гаусса получил новое выражение:
На самом деле эта формула была небольшой модификацией предыдущей; ученый обозначил ее Li(N) и назвал интегральным логарифмом N; выражение было более точным, поскольку в нем ряд сумм заменялся интегралом, то есть бесконечной суммой. Итак, выражение, заданное Гауссом, имело вид:
Гаусс предположил: π(Ν) = Li(N), что известно как гипотеза Гаусса о простых числах, которая, как мы увидим, превратилась в теорему Гаусса о простых числах. Так немецкий математик снова превзошел Лежандра, хотя для того чтобы доказать его открытие, потребовался огромный технический прогресс в вычислении простых чисел. Чтобы проверить свою гипотезу, Гаусс много времени посвятил построению таблиц простых чисел. В возрасте более 70 лет он написал астроному Иоганну Энке (1791-1865): «Очень часто я пользовался четвертью часа отсутствия дел, чтобы находить простые числа с промежутками размером в тысячу». Что и говорить, весьма оригинальный способ отдыхать! Но благодаря ему Гауссу удалось определить количество простых чисел, меньших 3000000, и он выяснил, что разница по сравнению с результатом его интегральной функции едва равна 0,0007 %. Когда появились более обширные таблицы простых чисел, обнаружилось, что формула Лежандра была гораздо менее точной и давала заметную погрешность для чисел больше 10000000.
С помощью современных методов вычислений было выяснено, что результат Гаусса для простых чисел меньше 1016 отличается от верного значения едва на одну десятимиллионную от 1 %, в то время как результат Лежандра дает отклонение в несколько тысяч миллионов раз больше. Мы можем утверждать, что Гаусс, основываясь на рассуждениях математического характера, превзошел Лежандра, который просто подобрал формулу для доступных ему данных.
Кроме этой первой гипотезы о том, что функция π(Ν) может быть точно оценена функцией Li(N) для бесконечных значений N, Гаусс вывел и вторую гипотезу, поскольку считал, что функция Li(N) в конце концов будет переоценивать реальное количество простых чисел (всегда на бесконечно малый процент) и что эта тенденция будет сохраняться. Это второе утверждение получило название второй гипотезы Гаусса. Доказать ее или опровергнуть было непростой задачей, поскольку в то время еще не было современных компьютеров, которые могли совершить необходимые вычисления. Подтвердить или опровергнуть гипотезы Гаусса можно с помощью строгого математического доказательства: нельзя ограничиться экспериментальным подтверждением, поскольку какой бы длинной ни была составленная таблица простых чисел, всегда будут сомнения в том, сохранится ли эта тенденция по мере продвижения ко все большим числам. Для математики возможности экспериментальной проверки на невообразимо больших числах недостаточно, и в этом ее отличие от других наук.
В проверке гипотез Гаусса заметную роль играл Бернхард Риман, которого можно назвать его лучшим учеником.
В 1809 году Вильгельм фон Гумбольдт (1767-1835) стал министром образования Пруссии и совершил революцию в образовательной системе. Изучение математики впервые получило большое значение в новых гимназиях и университетах, студентов воодушевляли изучать математику как таковую, а не только в качестве вспомогательной дисциплины на службе у других наук. Но эта тенденция весьма отличалась от французского подхода, в котором превалировало утилитарное знание. Одним из тех, кому удалось воспользоваться этим изменением, был Риман, на тот момент один из самых способных студентов-математиков в Германии. После окончания учебы в Люнебурге (государство Ганновер), следуя желанию своего отца-священнослужителя, он в 1846 году поступил в Гёттингенский университет, который славился преподаванием теологии. Так судьба свела Римана с уже пожилым Гауссом. Через некоторое время молодой студент убедил своего отца разрешить ему заменить изучение теологии на математику. Риман в течение двух лет учился в Берлинском университете, поскольку в Гёттингене, по его мнению, было мало интеллектуальных стимулов, помимо Гаусса. В Берлине он завязал общение с Дирихле, который предложил студенту первые задачи с простыми числами. Во время пребывания в Берлине Бернхарду удалось изучить записи Гаусса с гипотезами о простых числах.
Риман вернулся в Гёттинген в 1849 году, чтобы закончить докторскую диссертацию и отдать работу на оценку своему учителю, Гауссу. Он сделал это в 1854 году, за год до смерти наставника.
Когда Риман начал заниматься простыми числами, нужно было доказать еще две гипотезы Гаусса. Во-первых, что функция π(Ν) может быть точно выражена Li(N) для любого N, то есть что разница между ними является бесконечно малой, таким образом, ее предел стремится к нулю. И во-вторых, что Li(N) > π(Ν) для любого значения Ν. Чтобы взяться за проблему, Риман ввел знаменитую дзета-функцию, которая определяется следующим образом:
где z — комплексное число, отличное от 1. У этой функции есть значения, в которых она равна нулю, такие как z = -2, z = -4 и другие, известные под названием тривиальных нулей. Нетривиальные нули — это те, для которых действительная часть строго больше нуля, но строго меньше 1. Вспомним, что комплексное число всегда имеет вид а + bi где а и b — действительные числа. Итак, для нетривиальных нулей справедливо 0 < а < 1.
Риман своим определением всего лишь обобщил функцию, изученную Эйлером, который обозначил ее так же:
Разница между дзета-функцией Римана и функцией Эйлера состоит в области определения. Для Эйлера х имеет действительное значение, в то время как у Римана z — комплексное число. Следовательно, функция Эйлера принимает действительные значения, в то время как функция Римана принимает комплексные значения.
Интерес математиков к этой бесконечной сумме, известной как ряд, происходит из мира музыки, и этот ряд появился раньше исследований Эйлера, хотя именно он изучил его наиболее глубоко и нашел связь с простыми числами. Пифагор заметил, что звук, издаваемый сосудом с водой, зависит от количества содержащейся в нем жидкости. Оказалось, что звуки гармоничны, если количество воды является частью от целого, дробью с числителем 1, то есть 1, 1/2, 1/3, 1/4, ... Пифагор назвал этот ряд гармоническим. Сумма гармонического ряда равноценна тому, что в дзета-функции Эйлера х взяли равным 1. Можно доказать, что сумма этого ряда бесконечна. На первый взгляд это очевидный результат, поскольку если мы сложим бесконечное количество положительных чисел, сумма будет расти и в конце концов примет бесконечное значение. Но дело в том, что это не так: для х = 2 ряд расходится. Действительно, Эйлер доказал, что значение
В истории математики не всегда было ясно, будет ли сумма бесконечного числа положительных членов обязательно равна бесконечности, и даже появились философские теории, посвященные этому.
Первый большой результат, связывающий дзета-функцию с простыми числами, был получен Эйлером в 1737 году. Он утверждает, что
где х — действительное число, а Р — множество простых чисел. В формуле сумма заменяется произведением дробей, образованных простыми числами. Чтобы дойти до этого результата,
- Предыдущая
- 22/32
- Следующая