Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл - Страница 46
На рис. 13.2 представлены связывающие и разрыхляющие ?-МО, образованные как s-орбиталями, так и p-орбиталями. В верхней части рисунка изображены два возможных способа объединения s-орбиталей. s-орбитали — это волны, и с ними может быть связан либо знак «плюс», либо знак «минус». Вверху обе s-орбитали имеют знак «плюс». Когда они объединяются, волны этих s-орбиталей интерферируют конструктивно и порождают ?-связывающую МО. Ниже на рисунке одна s-орбиталь имеет знак «плюс», а другая — знак «минус». Когда они объединяются, то интерферируют деструктивно и образуют разрыхляющую МО. Связывающая МО концентрирует электронную плотность между ядрами, тогда как разрыхляющая МО выталкивает электронную плотность вовне, уменьшая несущую отрицательный заряд электронную плотность между ядрами. Положительно заряженные ядра отталкиваются сильнее, что и делает эту конфигурацию разрыхляющей.
В нижней части рис. 13.2 показаны результаты объединения двух орбиталей с получением молекулярных ?-орбиталей. ?-p-связывающие МО образуются в результате перекрытия положительных лепестков одной p-орбитали с положительными лепестками другой p-орбитали. Возникает конструктивная интерференция между положительными лепестками, создающая высокую электронную плотность между атомными ядрами. Имеются две узловые плоскости, перпендикулярные странице. Эти две узловые плоскости наследуются от двух атомных p-орбиталей. Напротив, в самом низу рисунка показано, как положительные лепестки одной p-орбитали перекрываются с отрицательными лепестками другой p-орбитали.
Рис. 13.2. Вверху: пара s-орбиталей перекрывается двумя разными способами, давая ?-связывающую (конструктивная интерференция) и ?-разрыхляющую (деструктивная интерференция) молекулярные орбитали. Внизу: пара p-орбиталей перекрывается двумя способами, давая ?-связывающую (конструктивная интерференция) и ?-разрыхляющую (деструктивная интерференция) молекулярные орбитали. Во всех случаях вдоль линии, соединяющей ядра, имеется ненулевая электронная плотность
В результате деструктивной интерференции образуется разрыхляющая МО. Электронная плотность выталкивается наружу и значительно уменьшается между двумя ядрами. В дополнение к двум узловым плоскостям, унаследованным от атомных орбиталей, появляется третья узловая плоскость, которая возникает благодаря полной деструктивной интерференции между положительным и отрицательным лепестками двух атомных p-орбиталей. У всех этих связывающих и разрыхляющих МО, образованных из атомных p-орбиталей, на линии, соединяющей ядра, электронная плотность отлична от нуля. Следовательно, это ?-МО.
Молекулярные пи-орбитали
s-орбитали могут формировать только ?-МО, но p-орбитали могут образовывать как ?-МО, так и другой тип молекулярных орбиталей, обозначаемых ? (греческая буква «пи»). Когда атомные орбитали сближаются концами, они образуют ?-МО. Когда они сближаются боками, они образует ?-МО (рис. 13.3).
В верхней части рисунка две p-орбитали образуют связывающую молекулярную орбиталь. Положительный лепесток одной атомной орбитали перекрывается с положительным лепестком другой, и аналогично для отрицательных лепестков. Как видно из рисунка, в области между двумя ядрами возникает значительная электронная плотность. Однако вдоль прямой, соединяющей ядра, электронная плотность равна нулю. Имеется узловая плоскость, перпендикулярная плоскости страницы, поскольку у каждой из атомных орбиталей есть такая узловая плоскость. Эта узловая плоскость проходит через ядра. Несмотря на наличие узловой плоскости, электронная плотность непосредственно над и под линией, соединяющей ядра, уменьшает отталкивание положительных ядерных зарядов. Энергия становится ниже, чем у отдельных атомов, что приводит к образованию ?-связывающей МО.
В нижней части рис. 13.3 показана ?-связывающая МО. Две атомные p-орбитали сближаются боками, но положительный лепесток одной орбитали перекрывается с отрицательным лепестком другой, и наоборот. Результатом становится деструктивная интерференция между лепестками, приводящая к появлению ?-разрыхляющей МО. Разрыхляющая МО имеет значительно меньшую электронную плотность между ядрами. Вследствие этого энергия становится выше, чем у отдельных атомов, и поэтому такая конфигурация атомных орбиталей порождает разрыхляющую МО.
Рис. 13.3. Вверху: пара p-орбиталей перекрывается, сближаясь боками, что даёт связывающую ?-орбиталь (конструктивная интерференция); вдоль линии, соединяющей ядра, электронная плотность равна нулю. Внизу: пара p-орбиталей перекрывается, сближаясь боками, с образованием разрыхляющей ?-орбитали (деструктивная интерференция). Обратите внимание на знаки лепестков атомных p-орбиталей. У разрыхляющей МО имеется узловая плоскость, проходящая между ядрами
Связи в двухатомных молекулах: молекула фтора
Теперь мы готовы к обсуждению связей в двухатомных молекулах с атомами, отличными от водорода. Начнём с двухатомной молекулы фтора F2. Будем использовать тот же подход, что применялся для H2, но теперь имеется больше орбиталей, и в дело вовлечено больше электронов. Представим, что мы сближаем два атома F и останавливаемся в точке с наименьшей энергией. Это расстояние, на котором два атома F удерживаются, когда они связаны (в предположении, что они образуют связь), как на рис. 12.5. Можно нарисовать диаграмму энергетических уровней, как на рис. 12.6. Необходимо определить ось, вдоль которой будут сближаться атомы, поскольку у них имеются pz-, px- и py-орбитали. Необходимо учитывать, сближаются p-орбитали концами или боками. Когда два атома (обозначим их a и b) сближаются вдоль оси z (рис. 13.4), pz-орбитали встречаются концами, а px- и py-орбитали — боками. Поэтому атомные pz-орбитали будут образовывать ?-МО, а px- и py-орбитали — ?-МО.
Рис. 13.4. Два атома сближаются вдоль оси z. При этом pz-орбитали будут сближаться концами, а px- и py- орбитали — боковыми сторонами
На рис. 13.5 представлена диаграмма энергетических уровней для двух атомов F, сблизившихся вдоль оси z. На этой диаграмме энергетические уровни атомных орбиталей двух атомов (a и b) изображены справа и слева, а соответствующие связывающие и разрыхляющие (*) МО показаны в середине. ?-MO, образованные атомными s-орбиталями, имеют индекс s; ?-MO, образованные атомными pz-орбиталями, имеют индекс z, а ?-МО, образованные атомными орбиталями px и py, имеют индексы x и y. Связывающие МО всегда ниже по энергии, чем атомные орбитали, которыми они образованы, а разрыхляющие МО всегда имеют более высокую энергию. Три атомные p-орбитали имеют одинаковую энергию. Когда квантовые состояния обладают одинаковой энергией, говорят, что они вырождены. На диаграмме три атомные p-орбитали, хотя они являются вырожденными, изображены тремя отдельными близко расположенными линиями. Как показано, только соответствующие друг другу атомные орбитали с одинаковой энергией объединяются в МО. Этот результат вытекает из квантовой теории.
- Предыдущая
- 46/84
- Следующая