Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Последнее изобретение человечества - Баррат Джеймс - Страница 41


41
Изменить размер шрифта:

Согласно Омохундро, самосовершенствование и программистское ноу-хау, которое оно подразумевает, следуют из рациональности ИИ (самосовершенствование в процессе движения к цели — рациональное поведение). Неспособность совершенствовать собственный программный код для машины была бы серьезной уязвимостью. ИИ испытывал бы потребность в овладении искусством программирования. Но как он может получить такие знания? Смоделируем ситуацию на простом гипотетическом сценарии с гертцелевой системой OpenCog.

План Гертцеля состоит в том, чтобы создать младенцеподобного ИИ-«агента» и выпустить его в насыщенный виртуальный мир на обучение. Полученные знания «младенец» мог бы дополнять при помощи какой-нибудь базы данных, или его можно было бы снабдить способностью понимать естественный язык и позволить просматривать Интернет. Мощные алгоритмы обучения, которые еще только предстоит создать, представляли бы знания с «вероятностными значениями истинности». Это означает, что понимание агентом какого-то явления или понятия могло бы улучшаться с получением большего числа примеров или данных. Вероятностный генератор рассуждений, который тоже пока в работе, дал бы машине возможность рассуждать и делать выводы с использованием неполных данных.

Используя генетическое программирование, Гертцель мог бы научить своего ИИ-агента развивать собственные новаторские способы машинного обучения — собственные программы. Эти программы позволили бы агенту экспериментировать и учиться — задавать правильные вопросы об окружающем мире, выдвигать и проверять гипотезы. Область обучения была бы практически неограниченной. Если машина может разрабатывать более качественные программы, она могла бы и совершенствовать собственные алгоритмы.

Что в таком случае могло бы помешать интеллектуальному взрыву произойти непосредственно в этом виртуальном мире? Вероятно, ничего. Эти рассуждения подтолкнули некоторых теоретиков к идее о том, что сингулярность может случиться и в виртуальном мире. Станет ли она и ее последствия при этом менее опасными, остается вопросом. Альтернатива этому варианту — снабдить разумного агента телом-роботом для продолжения обучения и выполнения поставленных задач в реальном мире. Еще один вариант — использовать ИИ-агента для усиления человеческого мозга.

Говоря в общем, те, кто считает, что интеллект должен быть материализован, утверждают, что само знание базируется на сенсорных и моторных ощущениях. Когнитивные процессы не могут протекать без тела. Накопление фактов о яблоке, говорят они, никогда не позволит вам, в человеческом смысле, понять, что такое яблоко. Вы ни за что не сформируете в мозгу концепт яблока, только читая и слушая рассказы о яблоках, — для формирования концепта необходимо, чтобы вы понюхали, подержали в руках, увидели и ощутили на вкус как можно больше настоящих яблок. В сообществе ИИ эта проблема известна как «проблема практики».

Рассмотрим некоторые системы, чьи мощные когнитивные способности превосходят, вообще говоря, уровень ИИ в узком смысле, но недотягивают до УЧИ. Недавно Ход Липсон из Лаборатории вычислительного синтеза Корнеллского университета разработал программное обеспечение, способное выводить законы природы из необработанных данных. Наблюдая за двойным маятником, эта система заново открыла законы Ньютона. В роли ученого в данном случае выступал генетический алгоритм. Начал он с грубых догадок (предположений) об уравнениях, описывающих движение маятника, а много поколений спустя выдал физические законы, например закон сохранения энергии.

Рассмотрим также тревожное наследие AM и Eurisco — ранних разработок создателя Сус Дугласа Лената. При помощи генетических алгоритмов AM — Автоматический математик — генерировал математические теоремы и открывал, по существу, заново элементарные математические правила, выводя их из математических данных. Но AM ограничивался только математикой, а Ленат хотел получить программу, которая решала бы задачи во многих областях знания. В 1980-е гг. он создал систему Eurisco (на латыни это слово означает «я нахожу»). Eurisco положила начало новому направлению в исследованиях ИИ, поскольку разработала эвристику, или эмпирические правила решения задач, а также правила, касавшиеся ее собственной работы. Она извлекала уроки из собственных успехов и неудач в решении задач и переводила эти уроки в формальную плоскость, вырабатывая новые правила. Она даже модифицировала текст собственной программы, написанный на языке Lisp.

Величайший успех пришел к Eurisco, когда Ленат выставил свою систему против противников-людей в виртуальной военной игре под названием Traveller Trillion Credit Squadron. В этой игре участники, оперируя ограниченным бюджетом, проектировали суда гипотетического флота и сражались с другими флотами. Среди переменных в этой игре были число и типы судов, толщина бронированных корпусов, число и типы орудий и многое другое. Eurisco спроектировала флот, протестировала его в сражении против гипотетических флотов, взяла лучшее у выигравших сил и скомпоновала из них новые проекты, добавила мутации, повторила весь процесс — и так далее, то есть провела цифровое моделирование естественного отбора. После 10 ООО сражений, проведенных на сотне объединенных в сеть персональных компьютеров, Eurisco получила флот, состоящий из множества стационарных кораблей с тяжелой броней и небольшим количеством вооружения. Все оппоненты Eurisco постигла одна и та же судьба — в конце игры все их корабли были потоплены, а у машины на плаву оставалась примерно половина флота. Eurisco легко завоевала первый приз 1981 г. В следующем году организаторы турнира по Traveller изменили правила игры и не объявили их заранее, чтобы машина не смогла промоделировать несколько тысяч сражений. Однако программа уже разработала на основании предыдущего опыта эффективные эмпирические правила, поэтому так много итераций ей уже не требовалось. Она вновь без труда выиграла. В 1983 г. организаторы игры пригрозили прервать состязание, если Eurisco в третий раз подряд возьмет приз. Ленат снял систему с соревнований.

Однажды в ходе работы у Eurisco появилось правило, которое быстро достигло самого высокого показателя ценности. Ленат и его команда попытались понять, чем так замечательно это правило. Оказалось, что всякий раз, когда какое-нибудь предложенное решение задачи получало высокую оценку, это правило давало ему имя, поднимая таким образом собственную ценность решения. Оригинальное, но неполное представление о ценности чего-либо. Eurisco не хватало понимания контекста; программа не знала, что подгонка правил под текущую ситуацию не помогает выигрывать. Именно тогда Ленат взялся за составление обширной базы данных о том, чего так не хватало Eurisco, — данных о здравом смысле. В результате родился Сус — база данных, призванная играть роль здравого смысла, на программирование которой ушла тысяча человеко-лет.

Ленат так и не раскрыл исходный программный код Eurisco, что дает некоторым участникам ИИ-блогосферы основания предполагать, что он либо намеревается когда-нибудь возобновить этот проект, либо тревожится о том, что это сделает кто-то другой. Следует отметить, что Елиезер Юдковски — человек, написавший об опасностях ИИ больше, чем кто-либо другой, — считает, что этот эпохальный алгоритм 1980-х гг. ближе всех на сегодняшний день подошел к понятию по-настоящему самосовершенствующейся ИИ-системы. И он убеждает программистов не возвращать этот проект к жизни.

Итак, наш первый постулат состоит в том, что для интеллектуального взрыва необходимо, чтобы система УЧИ, о которой идет речь, владела искусством самосовершенствования, подобно Eurisco, и сознавала себя.

Сформулируем еще один постулат, прежде чем перейти к узким местам и преградам на пути к цели. По мере повышения интеллекта сознающей себя самосовершенствующейся ИИ-системы потребность в эффективности заставит ее сделать текст собственной программы как можно компактнее и втиснуть как можно больше интеллекта в «железо», в котором она родилась. Тем не менее доступные аппаратные ресурсы могут стать для системы ограничивающим фактором. К примеру, что если в ее аппаратном окружении не хватит постоянной памяти для хранения собственных копий, необходимых для самосовершенствования? Многократное пошаговое улучшение программы — основа интеллектуального взрыва по Гуду. Именно поэтому в сценарии Busy Child я предположил, что интеллектуальный взрыв происходит в недрах качественного, вместительного суперкомпьютера.