Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Паскаль - Тарасов Борис Николаевич - Страница 16
Сын торговца кожами, скромный чиновник по приему жалоб в кассационной палате Тулузы и великий математик Ферма также высказал Декарту через Мерсенна свои замечания по поводу идей, содержавшихся в «Диоптрике». Обнаружил Ферма и ряд недочетов в «Геометрии», послав ее автору свое сочинение «О наибольших и наименьших величинах», как бы дополнявшее работу философа. Декарт был явно раздосадован замечаниями Тулузского юриста и решил, как он писал в письме к Мерсенну, что Ферма направил ему свою работу «с целью вступить в соперничество и показать, что он в этом знает больше, чем я». Чтобы сразить «соперника», Декарт стал несправедливо критиковать метод Ферма в шутливо-высокомерном тоне. Так через посредничество Мерсенна началось то, что Ферма называл «своей малой войной с Декартом», а последний — «малым процессом математики против г. Ферма». Подлили масла в огонь и обострили полемику Роберваль с Этьеном Паскалем, которые выступили защитниками автора «О наибольших и наименьших величинах», в то время как Мидорж и Арди поддерживали Декарта. Полемика эта, несмотря на порою невыдержанный характер, имела большое научное значение для разработки дифференциального исчисления, способствовала уточнению и углублению основных понятий анализа.
Юный Блез с жадностью вникает в перипетии дискуссий в научной среде, которая естественно развивает его природные дарования, умножает эффект педагогических усилий отца. Стараясь не пропускать ни одного заседания ученых мужей и внимательно прислушиваясь к их беседам, подросток легко и быстро овладевает секретами математического мастерства. Через некоторое время он уже не только слушает, но и активно участвует в обсуждениях. Причем, как отмечает Жильберта, отличаясь проницательным умом, Блез умеет находить тонкие ошибки в доказательствах, которые не замечают многоопытные мужи, поэтому его мнение всегда очень высоко ценится. Больше того: Блез не только обсуждает чужие труды, но и начинает приносить на научные собрания свои собственные сочинения.
6
Блезу исполняется всего шестнадцать лет, когда он пишет и затем публикует свое исследование «Опыт о конических сечениях», вызвавшее большой резонанс в кружке Мерсенна и снискавшее одобрение многих маститых математиков, познакомившихся с этой работой.
Конические сечения, которым посвящен «Опыт...», — хорошо известные в древности эллипс, парабола и гипербола. С помощью этих кривых решались задачи на построение (например, удвоение куба), которые не удавалось выполнить с применением простейших чертежных инструментов — циркуля и линейки. В дошедших до нас исследованиях древнегреческие математики получали эллипс, параболу и гиперболу при сечении плоскостями одного и того же конуса: если секущая плоскость составляет с образующей угол больше угла при вершине осевого сечения, то получится эллипс, если этот угол меньше — гипербола, если углы равны — парабола. Наиболее полным и обобщающим сочинением, посвященным этим кривым, были «Конические сечения» Аполлония Пергского, жившего во втором веке до новой эры. В своем труде, составленном из восьми книг, Аполлоний рассматривал в отдельности эллипс, гиперболу и параболу, доказывая их определяющие свойства, которые зачастую оказывались сходными: несмотря на различную форму, эти три вида конических сечений тесно связаны друг с другом, и большинство теорий, касающихся эллипса, с теми или иными изменениями применимы к гиперболе и параболе. Но древнегреческий математик не располагал единым методом исследования, не опирался на всеобъемлющие формулы и уравнения, и поэтому его теория была направлена больше на особенности отдельных кривых, чем на их общие свойства. Такая направленность соответствовала духу античной науки, которая в явлениях окружающего мира видела скорее качественные и разнородные сущности, нежели количественные закономерности, а каждую конкретную задачу стремилась рассматривать в отдельности, саму по себе, применяя в каждом случае соответствующие этой задаче методы.
Дальнейшее развитие теории конических сечений связано с созданием в XVII веке новых геометрических методов. Принципиально иной подход к теории конических сечений дал Декарт в своей аналитической геометрии, где ему удалось свести качественные особенности геометрических образов к количественным соотношениям. В противоположность древним авторам он стремился не столько решать отдельные, изолированные проблемы, сколько устанавливать зависимость между ними, исследовать соотношения между общими величинами, что позволяло общими же методами исследовать множество частных задач. Все это стало возможным благодаря алгебраизации геометрии, введению Декартом понятия переменной величины, применению буквенной символики для записи функциональной зависимости. Использование метода прямоугольных координат, связь геометрических фигур с числом позволили Декарту рассматривать эти фигуры с помощью алгебраических уравнений: геометрический объект задается уравнением, описывающим зависимость координат его точек. По свойствам этого уравнения и судят о свойствах геометрического объекта. Таким образом, конические сечения в аналитической геометрии стали кривыми второго порядка, то есть кривыми, выражаемыми в Декартовых координатах уравнением второй степени.
Но рядом с этой алгебраизированной, «количественной» геометрией в XVII веке существовала и другая, «чистая» геометрия, продолжавшая традиции конкретного «качественного» исследования древнегреческих математиков и использовавшая одновременно новые методы. Главным представителем этого направления в математике был Дезарг, заложивший основы проективной и начертательной геометрии. Ему принадлежит одна из основных теорем проективной геометрии, дающая возможность выполнять перспективные построения в одной плоскости. Кладя в основу своих методов понятие перспективы и систематически применяя перспективное изображение, Дезарг изучал конические сечения как проекции круга, что давало новые и очень интересные результаты. Его идеи при жизни были признаны лишь наиболее выдающимися математиками, для современников в целом они оставались малопонятными, чему в немалой степени способствовал сложный и темный стиль научных трудов Дезарга. Их чтение затруднялось большим количеством совершенно новых терминов, которые он считал необходимым ввести и часто заимствовал из ботаники. Так, одно из основных сочинений Дезарга, «Черновой проект подхода к тому, что происходит при встрече конуса с плоскостью», которое повлияло на юношескую работу Паскаля, совершенно справедливо называли в XVII веке «уроками мрака».
- Предыдущая
- 16/110
- Следующая